وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Nanodegree Program – Become a Deep Reinforcement Learning Expert

سرفصل های دوره

Part 01-Module 01-Lesson 01_Welcome to Deep Reinforcement Learning
  • 01. Welcome To DRLND-i1-l0n1ntes
  • 01. Welcome to the Deep Reinforcement Learning Nanodegree.html
  • 02. RL In The Real World-IGlAyGbOTHo
  • 02. RL in the Real World.html
  • 03. Overview of the ND Program.html
  • 04. Projects You Will Build.html
  • 04. Unity Machine Learning Agents-jC12h4UAxqs
  • 05. Play Tennis!.html
  • 06. Deadline Policy.html
  • 07. Udacity Support.html
  • 08. Community Guidelines.html
  • index.html
      img
    • banana.zip
    • bipedal-walker.zip
    • dumb-soccer.zip
    • game-example.zip
    • lunar-lander.zip
    • mjg2mzcyma.zip
    • mountain-car-cts.zip
    • output.zip
    • reacher.zip
    • screen-shot-2018-06-12-at-5.07.10-pm.zip
    • screen-shot-2018-07-06-at-11.33.53-am.zip
    • soccer.zip

  • Part 01-Module 01-Lesson 02_Get Help from Peers and Mentors
  • 01. What It Takes.html
  • 02. Reviews.html
  • 03. Knowledge.html
  • 04. Student Hub.html
  • index.html
      img
    • image4.zip
    • image8.zip
    • screen-shot-2018-11-07-at-9.55.40-pm.zip
    • screen-shot-2018-11-07-at-9.59.16-pm.zip
    • screen-shot-2018-11-07-at-10.23.07-pm.zip
    • screen-shot-2018-11-09-at-6.28.07-pm.zip

  • Part 01-Module 01-Lesson 03_Get Help with Your Account
  • 01. FAQ.html
  • 02. Support.html
  • index.html
      img
    • screen-shot-2018-11-09-at-7.38.47-pm.zip
    • screen-shot-2018-11-09-at-7.48.22-pm.zip
    • screen-shot-2018-11-09-at-7.49.34-pm.zip
    • screen-shot-2018-11-09-at-7.49.50-pm.zip

  • Part 01-Module 01-Lesson 04_Learning Plan
  • 01. Learning Plan.html
  • 02. Reference Guide.html
  • 03. OpenAI Gym.html
  • 04. GitHub Repository.html
  • 05. AWS Credits.html
  • 06. Student Resources.html
  • index.html
      img
    • 42135602-b0335606-7d12-11e8-8689-dd1cf9fa11a9.zip
    • download.zip
    • grokking-deeprl.zip
    • image4.zip
    • openaigym-gif.zip
    • paper-notes.zip
    • udacitylogo.zip
    • unknown.zip

  • Part 01-Module 01-Lesson 05_Introduction to RL
  • 01. Introduction.html
  • 01. Introduction-6jSFl5kxIBs
  • 02. Applications.html
  • 02. Applications-CV6B84mKRNM
  • 03. The Setting.html
  • 03. The Setting-nh8Gwdu19nc
  • 04. Resources.html
  • 04. Resources-_YPqfAnCqtk
  • index.html

  • Part 01-Module 01-Lesson 06_The RL Framework The Problem
  • 01. Introduction.html
  • 01. Introduction-X_9l_ZqXXBA
  • 02. The Setting, Revisited.html
  • 02. The Setting, Revisited-V6Q1uF8a6kA
  • 03. Episodic vs. Continuing Tasks.html
  • 03. Episodic vs. Continuing Tasks-E1I-BPanSM8
  • 04. Quiz Test Your Intuition.html
  • 05. Quiz Episodic or Continuing.html
  • 06. The Reward Hypothesis.html
  • 06. The Reward Hypothesis-uAqNwgZ49JE
  • 07. Goals and Rewards, Part 1.html
  • 07. Goals and Rewards, Part 1-XPnj3Ya3EuM
  • 08. Goals and Rewards, Part 2.html
  • 08. Goals and Rewards, Part 2-pVIFc72VYH8
  • 09. Quiz Goals and Rewards.html
  • 10. Cumulative Reward.html
  • 10. Cumulative Reward-ysriH65lV9o
  • 11. Discounted Return.html
  • 11. Discounted Return-opXGNPwwn7g
  • 12. Quiz Pole-Balancing.html
  • 13. MDPs, Part 1.html
  • 13. MDPs, Part 1-NBWbluSbxPg
  • 14. MDPs, Part 2.html
  • 14. MDPs, Part 2-CUTtQvxKkNw
  • 15. Quiz One-Step Dynamics, Part 1.html
  • 16. Quiz One-Step Dynamics, Part 2.html
  • 17. MDPs, Part 3.html
  • 17. MDPs, Part 3-UlXHFbla3QI
  • 18. Finite MDPs.html
  • 19. Summary.html
  • index.html
      img
    • 1omsg2-mkguagky1c64uflw.zip
    • article-2278590-1792e332000005dc-394-634x615.zip
    • backgammonboard.svg.zip
    • chess-game.zip
    • go.zip
    • index.zip
    • maze.zip
    • pup.zip
    • screen-shot-2017-09-20-at-12.02.06-pm.zip
    • screen-shot-2017-09-21-at-3.08.03-pm.zip
    • screen-shot-2017-09-21-at-3.25.10-pm.zip
    • screen-shot-2017-09-21-at-3.46.12-pm.zip
    • screen-shot-2017-09-21-at-4.34.08-pm.zip
    • screen-shot-2017-09-21-at-12.20.30-pm.zip
    • screen-shot-2017-09-21-at-12.20.50-pm.zip

  • Part 01-Module 01-Lesson 07_The RL Framework The Solution
  • 01. Introduction.html
  • 01. Introduction-9Wyf5Zsska8
  • 02. Policies.html
  • 02. Policies-hc3LrvaC13U
  • 03. Quiz Interpret the Policy.html
  • 04. Gridworld Example.html
  • 04. Gridworld Example-XeHBmPFqTsE
  • 05. State-Value Functions.html
  • 05. State-Value Functions-llakAjwox_8
  • 06. Bellman Equations.html
  • 06. Bellman Equations-UgIaDMvSdUo
  • 07. Quiz State-Value Functions.html
  • 08. Optimality.html
  • 08. Optimality-j231aRV74QM
  • 09. Action-Value Functions.html
  • 09. Action-Value Functions-KJLaRfOOPGA
  • 10. Quiz Action-Value Functions.html
  • 11. Optimal Policies.html
  • 11. Optimal Policies-2rguYpVyCto
  • 12. Quiz Optimal Policies.html
  • 13. Summary.html
  • index.html
      img
    • screen-shot-2017-08-31-at-3.27.10-pm.zip
    • screen-shot-2017-09-21-at-12.20.30-pm.zip
    • screen-shot-2017-09-24-at-4.28.04-pm.zip
    • screen-shot-2017-09-25-at-5.51.40-pm.zip
    • screen-shot-2017-09-25-at-6.02.37-pm.zip
    • screen-shot-2017-09-25-at-9.18.00-pm.zip
    • screen-shot-2017-09-25-at-11.35.38-am.zip

  • Part 01-Module 01-Lesson 08_Monte Carlo Methods
  • 01. L601 Intro RENDER V2-3H5x0lstvmo
  • 01. Review.html
  • 02. Gridworld Example.html
  • 02. L602 Gridworld Example RENDER V2-2-Lwibg_IfmrA
  • 03. L603 Monte Carlo Methods RENDER V3-2-titaMCRl224
  • 03. Monte Carlo Methods.html
  • 04. L604 MC Prediction Part 1RENDER V2-6ts9gdIS6vg
  • 04. MC Prediction - Part 1.html
  • 05. L605 MC Prediction Part 2 RENDER V3-jR49ZyKuJ98
  • 05. MC Prediction - Part 2.html
  • 06. L606 MC Prediction Part 3 RENDERv1 V4-9LP6uXdmWxQ
  • 06. MC Prediction - Part 3.html
  • 07. OpenAI Gym BlackJackEnv.html
  • 08. Workspace - Introduction.html
  • 09. Coding Exercise.html
  • 09. MC Prediction - Solution Walkthrough-Pwiqk7Pncgc
  • 10. Workspace.html
  • 11. Greedy Policies.html
  • 11. L611 Greedy Policies RENDER V4-DH6c-aODMLU
  • 12. Epsilon-Greedy Policies.html
  • 12. L612 Epsilon Greedy Policies RENDER V4-PxJMtlR06MY
  • 13. MC Control.html
  • 14. Exploration vs. Exploitation.html
  • 15. Incremental Mean.html
  • 15. L615 Incremental Mean RENDER V4-h-8MB7V1LiE
  • 16. Constant-alpha.html
  • 16. L617 Constant Alpha Edits RENDER V1-LetHoOtNdJc
  • 16. MC Control Constant-alpha-QFV1nI9Zpoo
  • 17. Coding Exercise.html
  • 17. M1 L6 S2 V1-6E_3NJcoxmU
  • 18. Workspace.html
  • 19. Summary.html
  • index.html
      img
    • 2-card-21.zip
    • exploration-vs.-exploitation.zip
    • jupyter.zip
    • latex-image-1-copy.zip
    • screen-shot-2017-09-20-at-12.02.06-pm.zip
    • screen-shot-2017-09-25-at-11.35.38-am.zip
    • screen-shot-2017-10-04-at-4.58.58-pm.zip
    • screen-shot-2017-10-04-at-5.01.26-pm.zip
    • screen-shot-2017-10-05-at-3.55.40-pm.zip
    • screen-shot-2018-04-30-at-10.27.56-am.zip
    • screen-shot-2018-05-01-at-11.12.36-pm.zip
    • screen-shot-2018-05-04-at-2.49.48-pm.zip
    • screen-shot-2018-05-04-at-2.51.59-pm.zip
    • screen-shot-2018-05-04-at-3.14.47-pm.zip
    • screen-shot-2018-05-05-at-1.20.10-pm.zip
    • screen-shot-2018-05-10-at-6.10.16-pm.zip

  • Part 01-Module 01-Lesson 09_Temporal-Difference Methods
  • 01. Introduction.html
  • 01. Introduction-yXErXQulI_o
  • 02. Review MC Control Methods.html
  • 03. L602 Gridworld Example RENDER V2-2-Lwibg_IfmrA
  • 03. Quiz MC Control Methods.html
  • 03. Quiz MC Control Methods-ZwIg6LDMyuo
  • 04. TD Control Sarsa.html
  • 04. TD Control Sarsa Part 1-HYV0SP9wm7g
  • 04. TD Control Sarsa Part 2-U_CV-UC9G2c
  • 05. Quiz Sarsa.html
  • 06. TD Control Q-Learning.html
  • 06. TD Control Sarsamax-4DxoYuR7aZ4
  • 07. Quiz Q-Learning.html
  • 08. TD Control Expected Sarsa.html
  • 08. TD Control Expected Sarsa-kEKupCyU0P0
  • 09. Quiz Expected Sarsa.html
  • 10. TD Control Theory and Practice.html
  • 11. OpenAI Gym CliffWalkingEnv.html
  • 12. Workspace - Introduction.html
  • 13. Coding Exercise.html
  • 14. Workspace.html
  • 15. Analyzing Performance.html
  • 16. Quiz Check Your Understanding.html
  • 17. Summary.html
  • index.html
      img
    • environment.zip
    • episode.zip
    • exploration-vs.-exploitation.zip
    • jupyter.zip
    • matengai-of-kuniga-coast-in-oki-island-shimane-pref600.zip
    • qtable2.zip
    • screen-shot-2017-10-17-at-11.02.44-am.zip
    • screen-shot-2017-12-17-at-12.49.34-pm.zip
    • screen-shot-2018-03-07-at-2.33.19-pm.zip
    • screen-shot-2018-03-07-at-2.43.07-pm.zip
    • screen-shot-2018-03-07-at-3.16.47-pm.zip
    • screen-shot-2018-03-07-at-3.53.08-pm.zip
    • screen-shot-2018-05-01-at-11.10.05-pm.zip
    • screen-shot-2018-05-04-at-6.14.28-pm.zip
    • screen-shot-2018-05-04-at-6.14.42-pm.zip
    • screen-shot-2018-05-04-at-6.14.56-pm.zip
    • screen-shot-2018-05-10-at-6.10.16-pm.zip
    • screen-shot-2018-05-24-at-11.45.52-am.zip

  • Part 01-Module 01-Lesson 10_Solve OpenAI Gym's Taxi-v2 Task
  • 01. Introduction.html
  • 02. Instructions.html
  • 03. Mini Project.html
  • index.html
      img
    • new-tab.zip
    • open-agent-monitor-main.zip
    • open-terminal.zip
    • run-main.zip
    • screen-shot-2018-04-14-at-3.13.15-pm.zip

  • Part 01-Module 01-Lesson 11_RL in Continuous Spaces
  • 01. Introducing Arpan.html
  • 02. Introduction-GPjK124RU5g
  • 02. Lesson Overview.html
  • 03. Discrete vs. Continuous Spaces.html
  • 03. Discrete vs. Continuous Spaces-uHstLeRzaE8
  • 04. Quiz Space Representations.html
  • 05. Discretization.html
  • 05. Discretization-j2eZyUpy--E
  • 06. Exercise Discretization.html
  • 07. Workspace Discretization.html
  • 08. Tile Coding.html
  • 08. Tile Coding-BRs7AnTZ_8k
  • 09. Exercise Tile Coding.html
  • 10. Workspace Tile Coding.html
  • 11. Coarse Coding.html
  • 11. Coarse Coding-Uu1J5KLAfTU
  • 12. Function Approximation.html
  • 12. Function Approximation-UTGWVY6jEdg
  • 13. Linear Function Approximation.html
  • 13. Linear Function Approximation-OJ5wrB7o-pI
  • 14. Kernel Functions.html
  • 14. Kernel Functions-RdkPVYyVOvU
  • 15. Non-Linear Function Approximation.html
  • 15. Non-Linear Function Approximation-rITnmpD2mN8
  • 16. Summary.html
  • 16. Summary-MTEBk43oByU
  • index.html
      img
    • arpan-headshot.zip
    • jupyter.zip
    • poker-hand-3-of-a-kind.zip
    • qtable.zip
    • screen-shot-2018-05-02-at-12.24.35-am.zip
    • screen-shot-2018-05-03-at-11.30.05-pm.zip

  • Part 01-Module 01-Lesson 12_What's Next
  • 01. Arpan Rollercoaster-Rf6cCYRqV58
  • 01. Congratulations!.html
  • 02. What can you do now.html
  • index.html
      img
    • dqn.zip

  • Part 02-Module 01-Lesson 01_Study Plan
  • 01. Study Plan.html
  • 02. Deep RL for Robotics.html
  • 02. Deep RL in Robotics-IjG_IWJdb1w
  • index.html
      img
    • output.zip
    • udacitylogo.zip

  • Part 02-Module 01-Lesson 02_Deep Q-Networks
  • 01. DQN Overview-WgiAvr7COR0
  • 01. From RL to Deep RL.html
  • 01. From RL to Deep RL-7HLJ0uaR1F0
  • 02. Deep Q-Networks.html
  • 02. Deep Q-Networks-GgtR_d1OB-M
  • 03. Experience Replay.html
  • 03. Experience Replay-wX_-SZG-YMQ
  • 04. Fixed Q-Targets.html
  • 04. Fixed Q-Targets-SWpyiEezfp4
  • 05. Deep Q-Learning Algorithm.html
  • 05. Deep Q-Learning Algorithm-MqTXoCxQ_eY
  • 06. Coding Exercise.html
  • 07. Workspace.html
  • 08. Deep Q-Learning Improvements.html
  • 09. 10 Double DQN V2-PGCEMLujiGI
  • 09. Double DQN.html
  • 10. 10 Prioritized Experience Replay V1-cN8z-7Ze9L8
  • 10. Prioritized Experience Replay.html
  • 11. 10 Dueling DQN V2-zZeHbPs39Ls
  • 11. Dueling DQN.html
  • 12. Rainbow.html
  • 13. Summary.html
  • 13. Summary-x6JggcDTcys
  • index.html
      img
    • dqn.zip
    • dueling-q-network.zip
    • jupyter.zip
    • rainbow-1445337690d8q.zip
    • screen-shot-2018-06-30-at-6.40.09-pm.zip
    • screen-shot-2018-06-30-at-7.03.40-pm.zip
    • sonic.zip

  • Part 02-Module 01-Lesson 03_Deep RL for Robotics
  • 01. 01 Introduction RENDER V2-dfeawuScC7k
  • 01. Introduction.html
  • 02. 02 Welcome!-1oElWzRt-lU
  • 02. 03 Transitioning-BvDvxw8e0CY
  • 02. C++ for Robotics.html
  • 03. 03 CC API HSSC HS RENDER V3-a9-HdpCaYW4
  • 03. CC++ API.html
  • 04. Catch Sample.html
  • 05. Udacity Workspace.html
  • 06. Fruit Sample.html
  • 07. Rover Sample.html
  • 08. Arm Sample.html
  • 09. 09 Jetson TX2 Edits V1-M26z7vTti_g
  • 09. Jetson Overview-i56qM6NNW9A
  • 09. Jetson TX2.html
  • 10. 10 Summary HS V3-cb1FGgZIitc
  • 10. Summary.html
  • index.html
      img
    • armenv.zip
    • fruit.zip
    • nv-rl-stack-diagram.zip
    • output.zip
    • rl-gazebo-fall.zip

  • Part 02-Module 01-Lesson 04_Navigation
  • 01. Unity ML-Agents.html
  • 02. The Environment - Introduction.html
  • 03. The Environment - Play.html
  • 04. Getting Started-ltz2GhFv04A
  • 04. The Environment - Explore.html
  • 05. Project Instructions.html
  • 06. Benchmark Implementation.html
  • 07. Not sure where to start.html
  • 08. Collaborate!.html
  • 09. Workspace.html
  • 10. (Optional) Challenge Learning from Pixels.html
  • Project Description - Navigation.html
  • Project Rubric - Navigation.html
  • index.html
      img
    • 849-1234251683jkyt.zip
    • 2018-02-27-16-05-37.zip
    • banana.zip
    • bananas-save.zip
    • idea-2579308-640.zip
    • screen-shot-2018-06-08-at-1.04.47-pm.zip
    • unity-wide.zip

  • Part 02-Module 02-Lesson 01_Opportunities in Deep Reinforcement Learning
  • 01. Opportunities in DRL.html
  • 02. Career Services-cuKecPpZ7PM
  • 02. Meet the Careers Team.html
  • 03. Access Your Career Portal.html
  • 04. Your Udacity Professional Profile.html
  • index.html
      img
    • get-hired-with-the-udacity-career-portal.zip
    • screen-shot-2017-10-27-at-1.49.58-pm.zip
    • screen-shot-2018-07-27-at-1.24.38-pm.zip
    • udacitylogo-copy.zip

  • Part 02-Module 02-Lesson 02_Optimize Your GitHub Profile
  • 01. Prove Your Skills With GitHub.html
  • 02. Introduction.html
  • 02. Introduction-Vnj2VNQROtI
  • 03. GitHub profile important items.html
  • 03. GitHub profile important items-prvPVTjVkwQ
  • 04. Good GitHub repository.html
  • 04. Good GitHub repository-qBi8Q1EJdfQ
  • 05. Interview with Art - Part 1.html
  • 05. Interview with Art - Part 1-ClLYamtaO-Q
  • 06. Identify fixes for example bad profile.html
  • 06. Identify fixes for example bad profile-AF07y1oAim0
  • 06. Identify fixes for example bad profile-ncFtwW5urHk
  • 07. Quick Fixes #1.html
  • 07. Quick Fixes-Lb9e2KemR6I
  • 08. Quick Fixes #2.html
  • 08. Quick Fixes #2-It6AEuSDQw0
  • 09. Writing READMEs with Walter.html
  • 09. Writing READMEs with Walter-DQEfT2Zq5_o
  • 10. Interview with Art - Part 2.html
  • 10. Interview with Art - Part 2-Vvzl2J5K7-Y
  • 11. Commit messages best practices.html
  • 12. Reflect on your commit messages.html
  • 12. Reflect on your commit messages-_0AHmKkfjTo
  • 13. Participating in open source projects.html
  • 13. Participating in open source projects-OxL-gMTizUA
  • 14. Interview with Art - Part 3.html
  • 14. Interview with Art - Part 3-M6PKr3S1rPg
  • 15. Participating in open source projects 2.html
  • 15. Participating in open source projects 2-elZCLxVvJrY
  • 16. Starring interesting repositories.html
  • 16. Starring interesting repositories-U3FUxkm1MxI
  • 16. Starring interesting repositories-ZwMY5rAAd7Q
  • 17. Next Steps.html
  • Project Description - Optimize Your GitHub Profile.html
  • Project Rubric - Optimize Your GitHub Profile.html
  • index.html
      img
    • 6485174133.zip
    • 6499079068.zip
    • 6509638772.zip
    • 6551597473.zip
    • mat-leonard-circle.zip

  • Part 03-Module 01-Lesson 01_Study Plan
  • 01. Study Plan.html
  • index.html
      img
    • udacitylogo.zip

  • Part 03-Module 01-Lesson 02_Introduction to Policy-Based Methods
  • 01. M3 L2 C01 V2-mMnhi8yzwKk
  • 01. Policy-Based Methods.html
  • 02. M3 L2 C02 V1-v8tGjlc2aG4
  • 02. Policy Function Approximation.html
  • 03. More on the Policy.html
  • 04. Hill Climbing.html
  • 04. M3 L2 C04 V3-5E86a0OyVyI
  • 05. Hill Climbing Pseudocode.html
  • 05. M3 L2 C05 V1-0XzzqIXyax0
  • 06. Beyond Hill Climbing.html
  • 06. M2L3 04 V1-QicxmyE5vTo
  • 07. M3 L2 C07 V3-2poDljPvY58
  • 07. More Black-Box Optimization.html
  • 08. Coding Exercise.html
  • 09. Workspace.html
  • 10. OpenAI Request for Research.html
  • 11. M2L3 02 V2-ToS8vXGdODE
  • 11. Why Policy-Based Methods.html
  • 12. Summary.html
  • index.html
      img
    • cartpole.zip
    • jupyter.zip
    • screen-shot-2018-06-26-at-11.53.35-am.zip
    • screen-shot-2018-06-28-at-6.46.54-pm.zip
    • screen-shot-2018-07-01-at-10.54.05-am.zip
    • screen-shot-2018-07-01-at-11.19.22-am.zip
    • screen-shot-2018-07-01-at-11.28.57-am.zip

  • Part 03-Module 01-Lesson 03_Policy Gradient Methods
  • 01. M3L3 C01 V3-ZEhQRASU5O4
  • 01. What are Policy Gradient Methods.html
  • 02. M3L3 C02 V6-zoOgRoaxGiU
  • 02. The Big Picture.html
  • 03. Connections to Supervised Learning.html
  • 03. M3L3 C03 V2-dJz_p4FKE-g
  • 04. M3L3 C04 V2-St9ftvMQ_ks
  • 04. Problem Setup.html
  • 05. M3L3 C05 V2-o6CI2q3IXEs
  • 05. REINFORCE.html
  • 06. (Optional) Derivation.html
  • 07. Coding Exercise.html
  • 08. Workspace.html
  • 09. What's Next.html
  • 10. Summary.html
  • index.html
      img
    • 350px-normal-distribution-pdf.zip
    • grad-descent.zip
    • jupyter.zip
    • screen-shot-2018-07-17-at-4.44.10-pm.zip
    • screen-shot-2018-07-27-at-2.25.43-pm.zip

  • Part 03-Module 01-Lesson 04_Proximal Policy Optimization
  • 01. Instructor Introduction.html
  • 01. Instructor Introduction-sokSgNtGj9Y
  • 02. Lesson Preview.html
  • 02. Training an agent to play atari-pong!-w27mvWFBnvQ
  • 03. Beyond REINFORCE.html
  • 04. Noise Reduction.html
  • 04. Noise Reduction-GCGqT2knFJ0
  • 05. Credit Assignment.html
  • 05. Credit Assignment-tfZw1moB25Y
  • 06. Policy Gradient Quiz.html
  • 07. pong with REINFORCE walkthrough-eKIjPrQWIgg
  • 07. pong with REINFORCE (code walkthrough).html
  • 08. pong with REINFORCE (workspace).html
  • 09. Importance Sampling.html
  • 09. Importance Sampling-cYPvWriOPIk
  • 10. PPO Part 1 The Surrogate Function-Y-boYZlpO7g
  • 10. PPO part 1- The Surrogate Function.html
  • 11. PPO Part 2 Clipping Policy Updates-NRzjGGX6c34
  • 11. PPO part 2- Clipping Policy Updates.html
  • 12. PPO summary.html
  • 12. TLPPO Summary V1-qRAUAAWA_kc
  • 13. Pong with PPO walkthrough-XhfhR7Z01S0
  • 13. pong with PPO (code walkthrough).html
  • 14. pong with PPO (workspace).html
  • index.html
      img
    • clipped-surrogate.zip
    • clipped-surrogate-explained.zip
    • policy-reward-cliff.zip

  • Part 03-Module 01-Lesson 05_Actor-Critic Methods
  • 01. Introduction.html
  • 01. M3L501 Introduction HS 1 V1-_OHo1pEaJcQ
  • 02. M3 L5 02 Motivation V1-dpFPlDtdxyQ
  • 02. Motivation.html
  • 03. Bias and Variance.html
  • 03. M3 L5 03 Bias And Variance V2-_vnkkwm46uU
  • 04. M3 L5 04 Two Ways For Estimating Expected Returns V3-2W6yIBDvfsQ
  • 04. Two Ways for Estimating Expected Returns.html
  • 05. Baselines and Critics.html
  • 05. M3 L5 05 Baselines And Critics V1-wqmqoiUuQHI
  • 06. M3 L5 06 Policybased Valuebased And ActorCritic V1-iyin896PNEc
  • 06. Policy-based, Value-Based, and Actor-Critic.html
  • 07. A Basic Actor-Critic Agent.html
  • 07. M3 L5 07 A Basic ActorCritic Agent V2-KdHQ24hBKho
  • 08. A3C Asynchronous Advantage Actor-Critic, N-step.html
  • 08. M3 L5 08 A3C Asynchronous Advantage ActorCritic V2-twNXFplIAP8
  • 09. A3C Asynchronous Advantage Actor-Critic, Parallel Training.html
  • 09. M3 L5 09 A3C Asynchronous Advantage ActorCritic Parallel Training V2-kKRbAKhjACo
  • 10. A3C Asynchronous Advantage Actor-Critic, Off- vs On-policy.html
  • 10. M3 L5 10 A3C Asynchronous Advantage ActorCritic Offpolicy Vs Onpolicy V1-AZiy5R0DESU
  • 11. A2C Advantage Actor-Critic.html
  • 11. M3 L5 11 A2C Advantage ActorCritic V2-fIWe3xA97DA
  • 12. A2C Code Walk-through.html
  • 12. A2c Export V1-LiUBJje2N0c
  • 13. GAE Generalized Advantage Estimation.html
  • 13. M3 L5 13 GAE Generalized Advantage Estimation V2-oLFocWp0dt0
  • 14. DDPG Deep Deterministic Policy Gradient, Continuous Actions.html
  • 14. M3 L5 14 DDPG Deep Deterministic Policy Gradient Continuous Actionspace V1-0NVOPIyrr98
  • 15. DDPG Deep Deterministic Policy Gradient, Soft Updates.html
  • 15. M3 L5 15 DDPG Deep Deterministic Policy Gradient Soft Updates V1-RT-HDnAVe9o
  • 16. DDPG Code Walk-through.html
  • 16. DDPG Export V1-08V9r3NgFSE
  • 17. M3L517 Summary HS 1 V1-rRuiMhijw_s
  • 17. Summary.html
  • index.html

  • Part 03-Module 01-Lesson 06_Deep RL for Finance (Optional)
  • 01. Introduction.html
  • 01. M3L601 Introduction HS V1-Nn1PblFSnP8
  • 02. High Frequency Trading.html
  • 02. M3L602 High Frequency Trading HFT RENDER V2-oM1zZdZ-8fE
  • 03. Challenges of Supervised Learning.html
  • 03. M3L603 Challenges Of Supervised Learning RENDER V1-_hAPnbDtteM
  • 04. Advantages of RL for Trading.html
  • 04. M3L04 Advantages Of Reinforcemnt Learning For Trading RENDER V1-rqHL4BZocI8
  • 05. M3L606 Optimization SC PT1 V1-6NiRtFyA2DU
  • 05. Optimal Liquidation Problem - Part 1 - Introduction.html
  • 06. M3L607 Optimization SC PT2 V1-JzL66ZbTC9U
  • 06. Optimal Liquidation Problem - Part 2 - Market Impact.html
  • 07. M3L608 Optimization SC PT3 V1-3pN77gMg788
  • 07. Optimal Liquidation Problem - Part 3 - Price Model.html
  • 08. M3L609 Optimization SC PT4 V2-N2LP-wg1jEI
  • 08. Optimal Liquidation Problem - Part 4 - Expected Shortfall.html
  • 09. Almgren and Chriss Model.html
  • 09. M3L610 Almgren And Chriss Model SC V1-rokcEQ4LXbU
  • 10. M3L611 Trading Lists SC V1-cGT-ADpHR74
  • 10. Trading Lists.html
  • 11. M3L612 The Efficient Frontier V1-EwM7Ksbs-ds
  • 11. The Efficient Frontier.html
  • 12. DRL for Optimal Execution of Portfolio Transactions.html
  • index.html

  • Part 03-Module 01-Lesson 07_Continuous Control
  • 01. Unity ML-Agents.html
  • 02. The Environment - Introduction.html
  • 03. The Environment - Real World.html
  • 04. The Environment - Explore.html
  • 04. Untitled-i2gVvXgOMnc
  • 05. Project Instructions.html
  • 06. Benchmark Implementation.html
  • 07. Not sure where to start.html
  • 08. General Advice.html
  • 09. Collaborate!.html
  • 10. Workspace.html
  • 11. (Optional) Challenge Crawl.html
  • Project Description - Continuous Control.html
  • Project Rubric - Continuous Control.html
  • index.html
      img
    • 849-1234251683jkyt.zip
    • 2018-02-27-16-05-37.zip
    • crawler.zip
    • idea-2579308-640.zip
    • image8.zip
    • output.zip
    • pic3.zip
    • reacher.zip
    • screen-shot-2018-05-02-at-4.56.45-pm.zip
    • screen-shot-2018-05-03-at-9.10.50-am.zip
    • screen-shot-2018-07-11-at-11.19.56-am.zip
    • udacitylogo.zip
    • unity-wide.zip
    • unknown.zip

  • Part 03-Module 02-Lesson 01_Strengthen Your Online Presence Using LinkedIn
  • 01. Get Opportunities with LinkedIn.html
  • 01. Why Network-exjEm9Paszk
  • 02. Meet Chris-0ccflD9x5WU
  • 02. Use Your Story to Stand Out.html
  • 03. Elevator Pitch-S-nAHPrkQrQ
  • 03. Why Use an Elevator Pitch.html
  • 04. Create Your Elevator Pitch.html
  • 04. Elevator Pitch-0QtgTG49E9I
  • 04. Pitching to a Recruiter-LxAdWaA-qTQ
  • 05. Use Your Elevator Pitch on LinkedIn.html
  • 06. Create Your Profile With SEO In Mind.html
  • 07. Profile Essentials.html
  • 08. Work Experiences Accomplishments.html
  • 09. Build and Strengthen Your Network.html
  • 10. Reaching Out on LinkedIn.html
  • 11. Boost Your Visibility.html
  • 12. Up Next.html
  • Project Description - Improve Your LinkedIn Profile.html
  • Project Rubric - Improve Your LinkedIn Profile.html
  • index.html
      img
    • profile-pics.zip
    • redacted-linkedinresults.zip
    • screen-shot-2018-02-23-at-5.00.25-pm.zip
    • screen-shot-2018-02-23-at-5.11.40-pm.zip
    • screen-shot-2018-09-21-at-11.36.43-am.zip
    • screen-shot-2018-09-21-at-12.02.03-pm.zip
    • speaking.zip
      media
    • unnamed-project-desc-0.zip
    • unnamed-project-desc-1.zip

  • Part 04-Module 01-Lesson 01_Study Plan
  • 01. Study Plan.html
  • index.html
      img
    • udacitylogo.zip

  • Part 04-Module 01-Lesson 02_Introduction to Multi-Agent RL
  • 01. Introducing Chhavi.html
  • 01. M4 L2 C01 Introducing Chhavi HS V1-imuw8tOMed4
  • 02. Introduction to Multi-Agent Systems.html
  • 02. M4 L2 C02 Introduction To Multi Agent Systems V1-ra-w63kzq6I
  • 03. M4 L2 C03 Motivation For Multi Agent Systems V1-i_s22qgQYL4
  • 03. Motivation for Multi-Agent Systems.html
  • 04. Applications of Multi-Agent Systems.html
  • 04. M4 L2 C04 Applications Of Multi Agent Systems V2-fw0G_gSDm6Q
  • 05. Benefits of Multi-Agent Systems.html
  • 05. M4 L2 C05 Benefits Of Multi Agent Systems V2-NXDv9cEZTaw
  • 06. M4 L2 C06 Markov Games 2 V1-Y9qq4Jqnwls
  • 06. Markov Games.html
  • 07. Markov Games.html
  • 08. Approaches to MARL.html
  • 08. M4 L2 C07 Approaches To MARL V1-uKV9AJykin0
  • 09. Cooperation, Competition, Mixed Environments.html
  • 09. M4 L2 C08 Cooperation Competition Mixed Environments A V1-vx6PIH5_oFg
  • 10. M4 L2 C09 Paper Description Part I HSAEG V1-nRKrQamUISs
  • 10. Research Topics.html
  • 11. M4 L2 C10a Paper Description Part II V1-Ks9-TeCg3Fs
  • 11. Paper Description, Part 1.html
  • 12. M4 L2 C10b Paper Description Part II V2-4hFAhtLJR5U
  • 12. Paper Description, Part 2.html
  • 13. M4 L2 C11 Summary HS V1-yGPHGYHqjq8
  • 13. Summary.html
  • 14. Lab Instructions.html
  • 15. MADDPG - Lab.html
  • index.html

  • Part 04-Module 01-Lesson 03_Case Study AlphaZero
  • 01. AlphaZero Preview.html
  • 01. Alpha Zero Preview-Zzc1XJ1aJ-4
  • 02. Zero-Sum Game.html
  • 02. Zero-Sum Game-uPw1dHVqdXQ
  • 03. Monte Carlo Tree Search 1 - Random Sampling.html
  • 03. Monte Carlo Tree Search 1 - Random Sampling-wn2B3j_Qz6E
  • 04. Monte Carlo Tree Search 2 - Expansion and Back-propagation.html
  • 04. Monte Carlo Tree Search 2 - Expansion and Back-propagation-H34Wtk1iNDY
  • 05. AlphaZero 1 Guided Tree Search.html
  • 05. AlphaZero 1 Guided Tree Search-LinuRy47xbw
  • 06. AlphaZero 2 Self-Play Training.html
  • 06. Alpha Zero 2 Self-Play Training-wl1qfPXqRuQ
  • 07. Alphazero python classes walkthrough-hKnBQvtJ_zQ
  • 07. TicTacToe using AlphaZero - notebook walkthrough-uUFuBscf98I
  • 07. TicTacToe using AlphaZero - walkthrough.html
  • 08. TicTacToe using AlphaZero - Workspace.html
  • 09. Advanced TicTacToe using AlphaZero.html
  • 09. Alphazero advanced tictactoe walkthrough-MOIk_BbCjRw
  • index.html

  • Part 04-Module 01-Lesson 04_Collaboration and Competition
  • 01. Unity ML-Agents.html
  • 02. The Environment - Introduction.html
  • 03. The Environment - Explore.html
  • 03. Untitled-kxDvrkg8ep0
  • 04. Project Instructions.html
  • 05. Benchmark Implementation.html
  • 06. Collaborate!.html
  • 07. Workspace.html
  • 08. (Optional) Challenge Play Soccer.html
  • Project Description - Collaboration and Competition.html
  • Project Rubric - Collaboration and Competition.html
  • index.html
      img
    • 849-1234251683jkyt.zip
    • 2018-02-27-16-05-37.zip
    • screen-shot-2018-08-16-at-4.37.07-pm.zip
    • soccer.zip
    • tennis.zip
    • unity-wide.zip
    • we-can-do-it-poster-1393770492mjo.zip

  • Part 05-Module 01-Lesson 01_Dynamic Programming
  • 01. Introduction.html
  • 01. Introduction-ek2PD9RDrWw
  • 02. OpenAI Gym FrozenLakeEnv.html
  • 03. Your Workspace.html
  • 04. Another Gridworld Example.html
  • 04. Another Gridworld Example-n9SbomnLb-U
  • 05. An Iterative Method, Part 1.html
  • 05. An Iterative Method-AX-hG3KvwzY
  • 06. An Iterative Method, Part 2.html
  • 07. Quiz An Iterative Method.html
  • 08. Iterative Policy Evaluation.html
  • 08. Iterative Policy Evaluation-eDXIL_oOJHI
  • 09. Implementation.html
  • 10. Mini Project DP (Parts 0 and 1).html
  • 11. Action Values.html
  • 12. Implementation.html
  • 13. Mini Project DP (Part 2).html
  • 14. Policy Improvement.html
  • 14. Policy Improvement-4_adUEK0IHg
  • 15. Implementation.html
  • 16. Mini Project DP (Part 3).html
  • 17. Policy Iteration.html
  • 17. Policy Iteration-gqv7o1kBDc0
  • 18. Implementation.html
  • 19. Mini Project DP (Part 4).html
  • 20. Truncated Policy Iteration.html
  • 20. Truncated Policy Iteration-a-RvCxlPMho
  • 21. Implementation.html
  • 22. Mini Project DP (Part 5).html
  • 23. Value Iteration.html
  • 23. Value Iteration-XNeQn8N36y8
  • 24. Implementation.html
  • 25. Mini Project DP (Part 6).html
  • 26. Check Your Understanding.html
  • 27. Summary.html
  • index.html
      img
    • actionvalue.zip
    • est-action.zip
    • frozen-lake-6.zip
    • improve.zip
    • iteration.zip
    • policy-eval.zip
    • screen-shot-2017-09-26-at-2.18.38-pm.zip
    • screen-shot-2017-09-26-at-4.22.09-pm.zip
    • screen-shot-2017-09-26-at-11.03.16-pm.zip
    • screen-shot-2017-10-02-at-10.41.44-am.zip
    • screen-shot-2017-12-17-at-9.41.03-am.zip
    • statevalue.zip
    • truncated-eval.zip
    • truncated-iter.zip
    • value-iteration.zip

  • Part 06-Module 01-Lesson 01_Neural Networks
  • 01. Introducing Luis.html
  • 02. Why Neural Networks.html
  • 02. Why Neural Networks-zAkzOZntK6Y
  • 03. 29 Neural Network Architecture 2-FWN3Sw5fFoM
  • 03. Combinando modelos-Boy3zHVrWB4
  • 03. Layers-pg99FkXYK0M
  • 03. Multiclass Classification-uNTtvxwfox0
  • 03. Neural Network Architecture.html
  • 04. DL 41 Feedforward FIX V2-hVCuvMGOfyY
  • 04. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs
  • 04. Feedforward.html
  • 05. Backpropagation.html
  • 05. Backpropagation V2-1SmY3TZTyUk
  • 05. Calculating The Gradient 1 -tVuZDbUrzzI
  • 05. Chain Rule-YAhIBOnbt54
  • 05. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4
  • 06. Training Optimization.html
  • 06. Training Optimization-UiGKhx9pUYc
  • 07. Testing.html
  • 07. Testing-EeBZpb-PSac
  • 08. Overfitting and Underfitting.html
  • 08. Underfitting And Overfitting-xj4PlXMsN-Y
  • 09. Early Stopping.html
  • 09. Model Complexity Graph-NnS0FJyVcDQ
  • 10. DL 53 Q Regularization-KxROxcRsHL8
  • 10. Regularization.html
  • 11. Regularization 2.html
  • 11. Regularization-ndYnUrx8xvs
  • 12. Dropout.html
  • 12. Dropout-Ty6K6YiGdBs
  • 13. Local Minima.html
  • 13. Local Minima-gF_sW_nY-xw
  • 14. Vanishing Gradient.html
  • 14. Vanishing Gradient-W_JJm_5syFw
  • 15. Other Activation Functions.html
  • 15. Other Activation Functions-kA-1vUt6cvQ
  • 16. Batch vs Stochastic Gradient Descent.html
  • 16. Batch vs Stochastic Gradient Descent-2p58rVgqsgo
  • 17. Learning Rate Decay.html
  • 17. Learning Rate-TwJ8aSZoh2U
  • 18. Random Restart.html
  • 18. Random Restart-idyBBCzXiqg
  • 19. Momentum.html
  • 19. Momentum-r-rYz_PEWC8
  • index.html
      img
    • luis-circle.zip
    • regularization-quiz.zip
    • sigmoid-derivative.zip

  • Part 06-Module 01-Lesson 02_Convolutional Neural Networks
  • 01. Introducing Cezanne.html
  • 02. 03 Data And Lesson Outline RENDER V2-jPr-5aZA6NE
  • 02. Lesson Outline and Data.html
  • 03. CNN Architecture, VGG-16.html
  • 04. Convolutional Layers.html
  • 04. Convolutional Layers (Part 2)-LX-yVob3c28
  • 05. Defining Layers in PyTorch.html
  • 06. Notebook Visualizing a Convolutional Layer.html
  • 07. Pooling, VGG-16 Architecture.html
  • 08. Pooling Layers.html
  • 08. Pooling Layers-OkkIZNs7Cyc
  • 09. Notebook Visualizing a Pooling Layer.html
  • 10. Fully-Connected Layers, VGG-16.html
  • 11. Notebook Visualizing FashionMNIST.html
  • 12. Training in PyTorch.html
  • 13. Notebook Fashion MNIST Training Exercise.html
  • 14. Notebook FashionMNIST, Solution 1.html
  • 15. Dropout-Ty6K6YiGdBs
  • 15. Review Dropout.html
  • 15.-r-rYz_PEWC8
  • 16. Notebook FashionMNIST, Solution 2.html
  • 17. 04 Feature Visualization V1 RENDER V2-xwGa7RFg1EQ
  • 17. Feature Visualization.html
  • 18. 05 Feature Maps V1RENDER V3-oRhsJHHWtu8
  • 18. Feature Maps.html
  • 19. 06 First Convolutional Layer T1 V1 RENDER V2-hIHDMWVSfsM
  • 19. First Convolutional Layer.html
  • 20. Visualizing CNNs (Part 2).html
  • 21. 10 Visualizing Activations V1 RENDER V2-CJLNTOXqt3I
  • 21. Visualizing Activations.html
  • 22. Notebook Feature Viz for FashionMNIST.html
  • 23. Notebook Visualize Your Net Layers.html
  • 24. Last Feature Vector and t-SNE.html
  • 25. Occlusion, Saliency, and Guided Backpropagation.html
  • 26. 20 Summary Of Feature Viz V2 RENDER V2-r2LBoEkXskU
  • 26. Summary of Feature Viz.html
  • index.html
      img
    • alexis.zip
    • cezanne-circle.zip
    • diagonal-line-1.zip
    • diagonal-line-2.zip
    • embedding.zip
    • grid-layer-1.zip
    • layer-1-grid.zip
    • screen-shot-2016-11-24-at-12.08.11-pm.zip
    • screen-shot-2016-11-24-at-12.09.02-pm.zip
    • screen-shot-2016-11-24-at-12.09.24-pm.zip
    • screen-shot-2018-04-06-at-4.54.39-pm.zip
    • screen-shot-2018-04-23-at-8.35.17-pm.zip
    • screen-shot-2018-04-23-at-8.35.25-pm.zip
    • screen-shot-2018-04-24-at-4.49.51-pm.zip
    • screen-shot-2018-04-24-at-5.08.30-pm.zip
    • screen-shot-2018-04-24-at-5.08.36-pm.zip
    • screen-shot-2018-04-24-at-5.47.43-pm.zip
    • screen-shot-2018-04-24-at-12.35.07-pm.zip
    • screen-shot-2018-04-24-at-12.47.51-pm.zip
    • screen-shot-2018-04-24-at-12.58.16-pm.zip
    • t-sne-mnist.zip
    • vgg-16.zip

  • Part 06-Module 01-Lesson 03_Deep Learning with PyTorch
  • 01. Introducing Mat.html
  • 02. Introducing PyTorch.html
  • 03. Part 1 V2-n4mbZYIfKb4
  • 03. PyTorch Tensors.html
  • 04. Defining Networks.html
  • 04. Py Part 2 V1-u50_ZyKqt8g
  • 05. Py Part 3 V2-u8hDj5aJK6I
  • 05. Training Networks.html
  • 06. Fashion-MNIST Exercise.html
  • 06. PyTorch - Part 4-AEJV_RKZ7VU
  • 07. Inference Validation.html
  • 07. Py Part 5 V2-coBbbrGZXI0
  • 08. Py Part 6 V1-HiTih59dCWQ
  • 08. Saving and Loading Trained Networks.html
  • 09. Loading Data Sets with Torchvision.html
  • 09. PyTorch - Part 7-hFu7GTfRWks
  • 10. Py Part 8 V1-3eqn5sgCOsY
  • 10. Transfer Learning.html
  • index.html
      img
    • mat-leonard-circle.zip

  • Part 07-Module 01-Lesson 01_Cloud Computing
  • 01. Overview.html
  • 02. Create an AWS Account.html
  • 03. Get Access to GPU Instances.html
  • 04. Apply Credits.html
  • 05. Launch an Instance.html
  • 06. Login to the Instance.html
  • 07. Test the Instance.html
  • index.html
      img
    • aws-add-sec-group.zip
    • aws-create-account.zip
    • aws-inst-stats.zip
    • edit-security-group.zip
    • launch.zip
    • launch-instance.zip
    • p2xlarge-limit-request.zip
    • p2-limit-increase.zip
    • review-and-launch.zip
    • screen-shot-2017-06-13-at-12.58.03-pm.zip
    • screen-shot-2017-11-26-at-9.38.24-am.zip
    • screen-shot-2017-11-26-at-9.55.20-am.zip
    • screen-shot-2017-11-26-at-10.30.15-am.zip
    • screen-shot-2018-01-08-at-5.37.22-am.zip
    • screen-shot-2018-01-08-at-5.38.03-am.zip
    • stop.zip
    • ud272-l2-16-10-aws-account.zip

  • Part 07-Module 01-Lesson 02_Udacity Workspaces
  • 01. Overview.html
  • 02. Introduction to Workspaces.html
  • 03. Workspaces Best Practices.html
  • index.html
      img
    • jupyter-logo.zip
    • workspaces-jupyter.zip
    • workspaces-menu.zip
    • workspaces-new.zip
    • workspaces-notebook.zip
    • workspaces-submit.zip
    • workspaces-terminal.zip

  • Part 08-Module 01-Lesson 01_C++ Getting Started
  • 01. Introduction.html
  • 01. Introduction-ahoiVrq4qAk
  • 02. Lesson Overview.html
  • 02. Lesson Overview C++-lR3PH3bL-9U
  • 02. Nd113 C3 L1 04 L Lesson Overview 2 V1-DjT2E23xhj8
  • 03. Elecia White.html
  • 04. Why C++.html
  • 04. Why C++-_t4ZvwfnuCA
  • 05. Python and C++ Comparison.html
  • 06. Static Vs Dynamic Typing-D7v6iIAORkE
  • 06. Static vs Dynamic Typing.html
  • 07. C++ - A Statically Typed Language.html
  • 08. Basic Data Types.html
  • 09. Floating versus Double [demonstration].html
  • 10. Doubles Are Bigger-uhwTWgmM2iY
  • 10. Doubles are Bigger.html
  • 11. Common Errors and Error Messages.html
  • 12. C++ Functions.html
  • 13. Anatomy of a Function.html
  • 14. Multiple Outputs.html
  • 15. Two Functions Same Name.html
  • 15. Two Functions Same Name-0ZF649G58l4
  • 15. Two Functions Same Name-9SgmzOfBmRU
  • 16. Function Signatures 1.html
  • 16. Function Signatures 1-T6kQ_4w98IQ
  • 17. Function Signatures 2.html
  • 17. Function Signatures 2-Sx4AWTmXl2U
  • 17. Function Signatures 3 V1-U3QAFb3AS1M
  • 18. If and Boolean Logic.html
  • 19. While and For Loops.html
  • 20. Switch Statement.html
  • 21. Libraries.html
  • 22. Forge on!.html
  • 22. Nd113 C Basics Last Video V1-dtu-RXovl0U
  • index.html
      img
    • copy-of-template-1.zip
    • copy-of-template-2.zip
    • cover.zip
    • embeddedlogo-04.zip
    • for.zip
    • my-drawing.zip
    • switch.zip
    • while.zip

  • Part 08-Module 01-Lesson 02_C++ Vectors
  • 01. C++ Vectors.html
  • 02. Namespaces.html
  • 03. Python Lists vs. C++ Vectors.html
  • 04. Initializing Vector Values.html
  • 05. Vector Methods.html
  • 06. Vectors and For Loops.html
  • 07. Math and Vectors.html
  • 08. 1D Vector Playground.html
  • 09. 2D Vectors.html
  • 10. 2D Vectors and For Loops.html
  • 11. 2D Vector Playground.html
  • 12. Next Lesson.html
  • index.html
      img
    • copy-of-template.zip
    • vectors.zip

  • Part 08-Module 01-Lesson 03_Practical C++
  • 01. Introduction To Compilation-dyzGEB8YDGg
  • 01. Introduction to Compilation.html
  • 02. Running Code Locally.html
  • 03. C++ Versions.html
  • 04. Structuring Functions and File Organization.html
  • 05. Input and Output.html
  • 06. Reading in Text Files.html
  • 07. Outputting to Text Files.html
  • 08. Exercises.html
  • index.html

  • Part 08-Module 01-Lesson 04_C++ Object Oriented Programming
  • 01. Introduction.html
  • 01. Introduction-4xHI5LFX-cQ
  • 02. Python vs. C++.html
  • 03. Why Use Object Oriented Programming-G2KzZfNu9Ak
  • 03. Why use Object Oriented Programming.html
  • 04. Using a Class in C++ [Demo].html
  • 05. Explanation of the Main.cpp File.html
  • 06. Practice Using a Class.html
  • 07. Review Anatomy of a Class.html
  • 08. Other Facets of C++ Classes.html
  • 09. Private and Public.html
  • 10. Header Files.html
  • 11. Inclusion Guards.html
  • 12. Implement a Class.html
  • 13. Class Variables.html
  • 14. Class Function Declarations.html
  • 15. Constructor Functions.html
  • 16. Set and Get Functions.html
  • 17. Matrix Functions.html
  • 18. Use an Inclusion Guard.html
  • 19. Instantiate an Object.html
  • 20. Running your Program Locally.html
  • index.html

  • Part 08-Module 02-Lesson 01_C++ Intro to Optimization
  • 01. Course Introduction.html
  • 01. Course Introduction-Lwc5oYApdUM
  • 02. C Opt 01 L V2-Kdx1_BI5ddc
  • 02. Empathize with the Computer.html
  • 03. 02 L Intro To Comp HW V1 RENDER V1-WDMGkq9mkB8
  • 03. Intro to Computer Hardware.html
  • 04. Embedded Terminal Explanation.html
  • 04. Nd113 Embedded Terminal V1-Bhl5JQ_N9V8
  • 05. Demo Machine Code.html
  • 06. Assembly Language.html
  • 07. 03 L Binary V1 RENDER V1-K6CpHxnhc2s
  • 07. Binary.html
  • 08. Demo Binary.html
  • 09. Demo Binary Floats.html
  • 10. 04 L C And RAM V1 RENDER V1-60jEbKV1UOI
  • 10. Memory and the CPU.html
  • 11. Demo Stack vs Heap.html
  • 12. C Opt 05 L V3-rTtZVyWxYG8
  • 12. Outro.html
  • index.html
      img
    • cli.zip
    • emptyterminal.zip
    • files.zip
    • menu.zip
    • menuopen.zip
    • texteditor.zip
    • untitled-drawing.zip

  • Part 08-Module 02-Lesson 02_C++ Optimization Practice
  • 01. Introduction.html
  • 02. Software Development and Optimization.html
  • 03. Optimization Techniques.html
  • 04. Dead Code.html
  • 05. Exercise Remove Dead Code.html
  • 06. If Statements.html
  • 07. Exercise If Statements.html
  • 08. For Loops.html
  • 09. Exercise For Loops.html
  • 10. Intermediate Variables.html
  • 11. Exercise Intermediate Variables.html
  • 12. Vector Storage.html
  • 13. Exercise Vector Storage.html
  • 14. References.html
  • 15. Exercise References.html
  • 16. Nd113 Story 1 V1-lIe2zso8A-w
  • 16. Sebastian's Synchronization Story.html
  • 17. Static Keyword.html
  • 18. Exercise Static Keyword.html
  • 19. Nd113 C L2 01 V1-h_P7ceb5ido
  • 19. Speed Challenge.html
  • index.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    شناسه: 7998
    حجم: 2345 مگابایت
    مدت زمان: 709 دقیقه
    تاریخ انتشار: ۲۰ اسفند ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید