وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Modern Reinforcement Learning: Deep Q Learning in PyTorch

سرفصل های دوره

How to Turn Deep Reinforcement Learning Research Papers Into Agents That Beat Classic Atari Games


1 - Introduction
  • 1 - M1.pdf
  • 1 - What You Will Learn In This Course
  • 2 - M2.pdf
  • 2 - Required Background software and hardware
  • 3 - How to Succeed in this Course

  • 2 - Fundamentals of Reinforcement Learning
  • 4 - Agents Environments and Actions
  • 4 - M4.pdf
  • 5 - M5.pdf
  • 5 - Markov Decision Processes
  • 6 - M6.pdf
  • 6 - Value Functions Action Value Functions and the Bellman Equation
  • 7 - M7.pdf
  • 7 - Model Free vs Model Based Learning
  • 8 - M8.pdf
  • 8 - The ExploreExploit Dilemma
  • 9 - M9.pdf
  • 9 - Temporal Difference Learning

  • 3 - Deep Learning Crash Course
  • 10 - Dealing with Continuous State Spaces with Deep Neural Networks
  • 10 - M10.pdf
  • 11 - M11.pdf
  • 11 - Naive Deep Q Learning in Code Step 1 Coding the Deep Q Network
  • 12 - Naive Deep Q Learning in Code Step 2 Coding the Agent Class
  • 13 - Naive Deep Q Learning in Code Step 3 Coding the Main Loop and Learning
  • 14 - Naive Deep Q Learning in Code Step 4 Verifying the Functionality of Our Code
  • 15 - Naive Deep Q Learning in Code Step 5 Analyzing Our Agents Performance
  • 16 - Dealing with Screen Images with Convolutional Neural Networks
  • 16 - M12.pdf

  • 4 - Human Level Control Through Deep Reinforcement Learning From Paper to Code
  • 17 - How to Read Deep Learning Papers
  • 17 - M13.pdf
  • 18 - Analyzing the Paper
  • 18 - human level control through deep reinforcement learning nature paper.zip
  • 19 - How to Modify the OpenAI Gym Atari Environments
  • 19 - M15.pdf
  • 20 - How to Preprocess the OpenAI Gym Atari Screen Images
  • 21 - How to Stack the Preprocessed Atari Screen Images
  • 22 - How to Combine All the Changes
  • 23 - How to Add Reward Clipping Fire First and No Ops
  • 24 - How to Code the Agents Memory
  • 24 - M16a.pdf
  • 25 - How to Code the Deep Q Network
  • 25 - M16b.pdf
  • 26 - Coding the Deep Q Agent Step 1 Coding the Constructor
  • 26 - M16c.pdf
  • 27 - Coding the Deep Q Agent Step 2 EpsilonGreedy Action Selection
  • 28 - Coding the Deep Q Agent Step 3 Memory Model Saving and Network Copying
  • 29 - Coding the Deep Q Agent Step 4 The Agents Learn Function
  • 30 - Coding the Deep Q Agent Step 5 The Main Loop and Analyzing the Performance

  • 5 - Deep Reinforcement Learning with Double Q Learning
  • 31 - Analyzing the Paper
  • 31 - deep reinforcement learning with double q learning.zip
  • 32 - Coding the Double Q Learning Agent and Analyzing Performance
  • 32 - M18.pdf

  • 6 - Dueling Network Architectures for Deep Reinforcement Learning
  • 33 - Analyzing the Paper
  • 33 - dueling network architectures for deep reinforcement learning the paper.zip
  • 34 - Coding the Dueling Deep Q Network
  • 34 - M20.pdf
  • 35 - Coding the Dueling Deep Q Learning Agent and Analyzing Performance
  • 35 - M21a.pdf
  • 36 - Coding the Dueling Double Deep Q Learning Agent and Analyzing Performance
  • 36 - M21b.pdf

  • 7 - Improving On Our Solutions
  • 37 - Implementing a Command Line Interface for Rapid Model Testing
  • 37 - M22.pdf
  • 38 - Consolidating Our Code Base for Maximum Extensability
  • 38 - M23.pdf
  • 39 - How to Test Our Agent and Watch it Play the Game in Real Time

  • 8 - Conclusion
  • 40 - M24.pdf
  • 40 - Summarizing What Weve Learned

  • 9 - Bonus Lecture
  • 41 - Bonus Video Where to Go From Here
  • 41 - M25.pdf
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 243
    حجم: 2187 مگابایت
    مدت زمان: 342 دقیقه
    تاریخ انتشار: 22 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید