وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Modern Data Analyst: SQL, Python & ChatGPT for Data Analysis

سرفصل های دوره

Data Analyst Course: SQL, Python, NumPy, Pandas, Data Visualization, Cleaning and ChatGPT


1. PART 1 - SQL
  • 1.1 Scripts and Datasets.html
  • 1. Welcome! (+ Resources for the course).html
  • 2. What is SQL MySQL
  • 3. Whats a table
  • 4. Whats a Primary Key
  • 5. Whats a foreign key

  • 2. Installation MySQL
  • 1. Section Overview.html
  • 2.1 Link.html
  • 2. How to install MySQL on Windows
  • 3.1 Link.html
  • 3. How to install MySQL on macOS

  • 3. Data Types
  • 1. Section Overview.html
  • 2. Data Types

  • 4. Commands
  • 1. Section Overview.html
  • 2. Part 1 - Creating a database and table
  • 3. Part 2-Creating a database and table
  • 4. Importing Data with MySQL
  • 5. The SELECT Command
  • 6. Insert
  • 7. Min
  • 8. Max
  • 9. Group by
  • 10. Where
  • 11. Sum
  • 12. Average
  • 13. Count
  • 14. And
  • 15. Or .
  • 16. In .
  • 17. Like
  • 18. Between
  • 19. Order by
  • 20. Having
  • 21. Update + Set
  • 22. Distinct

  • 5. Functions
  • 1. Section Overview.html
  • 2. Left and Right
  • 3. Length
  • 4. Upper Lower
  • 5. Repeat
  • 6. Replace
  • 7. Trim
  • 8. Cast + Convert
  • 9. Concat
  • 10. Curdate, day, month
  • 11. Date add

  • 6. Other Important Concepts
  • 1. Temporary Table
  • 2. Joins
  • 3. Subqueries
  • 4. Case
  • 5. Dense Rank

  • 7. PART 2 - Python
  • 1. Installing Python and Jupyter Notebook through Anaconda
  • 2. Jupyter Notebook Interface
  • 3. Cell Types and Modes in Jupyter Notebook
  • 4. Popular Keyboard Shortcuts in Jupyter Notebook

  • 8. Python Basics
  • 1. Hello World
  • 2. Data Types
  • 3. Variables
  • 4. Lists
  • 5. Dictionary
  • 6. If Statement
  • 7. For Loop
  • 8. Function
  • 9. Modules

  • 9. Introduction to Pandas and Numpy
  • 1. Introduction to Pandas
  • 2. How to Create a Dataframe
  • 3. How to show a dataframe head(), tail() and pd.options.display
  • 4. Basic Attributes, Functions and Methods
  • 5. Selecting One Column from a Dataframe
  • 6. Selecting Two or More Columns from a Dataframe
  • 7. Add New Column to a Dataframe (Simple Assignment)
  • 8. Add New Column to a Dataframe with assign() and insert()
  • 9. Operations in dataframes
  • 10. The value counts() method
  • 11. Sort a DataFrame with the sort values() method
  • 12. The set index() and sort index() methods
  • 13. Rename Columns and Index with rename()

  • 10. Filtering Data
  • 1. Filter a Dataframe Based on 1 Condition
  • 2. Creating a Conditional Column from 2 Choices np.where()
  • 3. Filter a Dataframe Based on 2 or More Conditions &,
  • 4. Creating a Conditional Column from More Than 2 Choices np.select()
  • 5. The isin() Method
  • 6. Find Duplicate Rows with the duplicated() method
  • 7. Drop Duplicate Elements with the drop duplicates() method
  • 8. Get and Count Unique Values with the unique() and nunique() methods

  • 11. Data Extraction
  • 1. loc() vs iloc()
  • 2. First Look at The Dataset Setting Index and Selecting Columns
  • 3. Selecting elements by index label with .loc()
  • 4. Selecting elements by index position with .iloc()
  • 5. Set New Value for a Cell In a Dataframe
  • 6. Drop Rows or Columns from a DataFrame
  • 7. Create Random Sample with the sample Method
  • 8. Filter A DataFrame with the query method
  • 9. The apply() method
  • 10. Lambda function + apply() method
  • 11. Make a Copy of a Dataframe with copy() (Deep Copy vs Shallow Copy)

  • 12. Reshaping and Pivoting Dataframes
  • 1. Introduction to Pivot Tables in Pandas
  • 2. The pivot() method
  • 3. The pivot table() method

  • 13. Visualizations in Python
  • 1. First Look at The Dataset and Making Pivot Table
  • 2. Lineplot
  • 3. Barplot
  • 4. Piechart
  • 5. Boxplot
  • 6. Histogram
  • 7. ScatterPlot
  • 8. Save Plot and Export Pivot Table

  • 14. GroupBy and Aggregate Function
  • 1. Dataset Overview
  • 2. The agg() method
  • 3. The Split-Apply-Combine Strategy
  • 4. The GroupBy Method
  • 5. The groupby() and agg() method
  • 6. The groupby() and lambda function
  • 7. The filter() method

  • 15. Merging and Concatenating Dataframes
  • 1. Intro dataset
  • 2. Concatenate Vertically
  • 3. Concatenate Horizontally
  • 4. Inner Joins
  • 5. Full Join and Exclusive Full Join
  • 6. Left Join and Exclusive Left Join
  • 7. Right Join and Exclusive Right Join

  • 16. Data Cleaning
  • 1. Dataset Overview
  • 2. Identify Missing Data with the isnull() Method
  • 3. Dealing with Missing Data Remove a column or row with .drop, .dropna or .isnull
  • 4. Dealing with Missing Data Replace NaN by the mean, median, mode with .fillna()
  • 5. Extracting data with split() and extract() and changing data type with astype()
  • 6. How Identify and Deal with Outliers
  • 7. Dealing with inconsistent capitalization with lower(), upper(), title()
  • 8. Remove blank spaces with strip(), lstrip(), and rstrip()
  • 9. Replace strings with replace() or sub()

  • 17. PART 3 - ChatGPT
  • 1. ChatGPT for Coding
  • 2. ChatGPT for Data Analysis
  • 3. ChatGPT for Automation
  • 4. Automating Web Scraping with GPT-4
  • 5. ChatGPT Code Interpreter
  • 6. How to work with chatgpt code interpreter
  • 7. Code Interterpreter Uploads
  • 8. ChatGPT Code Interpreter - First Look
  • 9. Web Scraping with Code Interpreter
  • 10. Automate Excel Reporting with the Code Interpreter
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 37441
    حجم: 7431 مگابایت
    مدت زمان: 1147 دقیقه
    تاریخ انتشار: ۲۰ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید