وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Modern Data Analyst: SQL, Python & ChatGPT for Data Analysis

سرفصل های دوره

Data Analyst Course: SQL, Python, NumPy, Pandas, Data Visualization, Cleaning and ChatGPT


1. PART 1 - SQL
  • 1.1 Scripts and Datasets.html
  • 1. Welcome! (+ Resources for the course).html
  • 2. What is SQL MySQL
  • 3. Whats a table
  • 4. Whats a Primary Key
  • 5. Whats a foreign key

  • 2. Installation MySQL
  • 1. Section Overview.html
  • 2.1 Link.html
  • 2. How to install MySQL on Windows
  • 3.1 Link.html
  • 3. How to install MySQL on macOS

  • 3. Data Types
  • 1. Section Overview.html
  • 2. Data Types

  • 4. Commands
  • 1. Section Overview.html
  • 2. Part 1 - Creating a database and table
  • 3. Part 2-Creating a database and table
  • 4. Importing Data with MySQL
  • 5. The SELECT Command
  • 6. Insert
  • 7. Min
  • 8. Max
  • 9. Group by
  • 10. Where
  • 11. Sum
  • 12. Average
  • 13. Count
  • 14. And
  • 15. Or .
  • 16. In .
  • 17. Like
  • 18. Between
  • 19. Order by
  • 20. Having
  • 21. Update + Set
  • 22. Distinct

  • 5. Functions
  • 1. Section Overview.html
  • 2. Left and Right
  • 3. Length
  • 4. Upper Lower
  • 5. Repeat
  • 6. Replace
  • 7. Trim
  • 8. Cast + Convert
  • 9. Concat
  • 10. Curdate, day, month
  • 11. Date add

  • 6. Other Important Concepts
  • 1. Temporary Table
  • 2. Joins
  • 3. Subqueries
  • 4. Case
  • 5. Dense Rank

  • 7. PART 2 - Python
  • 1. Installing Python and Jupyter Notebook through Anaconda
  • 2. Jupyter Notebook Interface
  • 3. Cell Types and Modes in Jupyter Notebook
  • 4. Popular Keyboard Shortcuts in Jupyter Notebook

  • 8. Python Basics
  • 1. Hello World
  • 2. Data Types
  • 3. Variables
  • 4. Lists
  • 5. Dictionary
  • 6. If Statement
  • 7. For Loop
  • 8. Function
  • 9. Modules

  • 9. Introduction to Pandas and Numpy
  • 1. Introduction to Pandas
  • 2. How to Create a Dataframe
  • 3. How to show a dataframe head(), tail() and pd.options.display
  • 4. Basic Attributes, Functions and Methods
  • 5. Selecting One Column from a Dataframe
  • 6. Selecting Two or More Columns from a Dataframe
  • 7. Add New Column to a Dataframe (Simple Assignment)
  • 8. Add New Column to a Dataframe with assign() and insert()
  • 9. Operations in dataframes
  • 10. The value counts() method
  • 11. Sort a DataFrame with the sort values() method
  • 12. The set index() and sort index() methods
  • 13. Rename Columns and Index with rename()

  • 10. Filtering Data
  • 1. Filter a Dataframe Based on 1 Condition
  • 2. Creating a Conditional Column from 2 Choices np.where()
  • 3. Filter a Dataframe Based on 2 or More Conditions &,
  • 4. Creating a Conditional Column from More Than 2 Choices np.select()
  • 5. The isin() Method
  • 6. Find Duplicate Rows with the duplicated() method
  • 7. Drop Duplicate Elements with the drop duplicates() method
  • 8. Get and Count Unique Values with the unique() and nunique() methods

  • 11. Data Extraction
  • 1. loc() vs iloc()
  • 2. First Look at The Dataset Setting Index and Selecting Columns
  • 3. Selecting elements by index label with .loc()
  • 4. Selecting elements by index position with .iloc()
  • 5. Set New Value for a Cell In a Dataframe
  • 6. Drop Rows or Columns from a DataFrame
  • 7. Create Random Sample with the sample Method
  • 8. Filter A DataFrame with the query method
  • 9. The apply() method
  • 10. Lambda function + apply() method
  • 11. Make a Copy of a Dataframe with copy() (Deep Copy vs Shallow Copy)

  • 12. Reshaping and Pivoting Dataframes
  • 1. Introduction to Pivot Tables in Pandas
  • 2. The pivot() method
  • 3. The pivot table() method

  • 13. Visualizations in Python
  • 1. First Look at The Dataset and Making Pivot Table
  • 2. Lineplot
  • 3. Barplot
  • 4. Piechart
  • 5. Boxplot
  • 6. Histogram
  • 7. ScatterPlot
  • 8. Save Plot and Export Pivot Table

  • 14. GroupBy and Aggregate Function
  • 1. Dataset Overview
  • 2. The agg() method
  • 3. The Split-Apply-Combine Strategy
  • 4. The GroupBy Method
  • 5. The groupby() and agg() method
  • 6. The groupby() and lambda function
  • 7. The filter() method

  • 15. Merging and Concatenating Dataframes
  • 1. Intro dataset
  • 2. Concatenate Vertically
  • 3. Concatenate Horizontally
  • 4. Inner Joins
  • 5. Full Join and Exclusive Full Join
  • 6. Left Join and Exclusive Left Join
  • 7. Right Join and Exclusive Right Join

  • 16. Data Cleaning
  • 1. Dataset Overview
  • 2. Identify Missing Data with the isnull() Method
  • 3. Dealing with Missing Data Remove a column or row with .drop, .dropna or .isnull
  • 4. Dealing with Missing Data Replace NaN by the mean, median, mode with .fillna()
  • 5. Extracting data with split() and extract() and changing data type with astype()
  • 6. How Identify and Deal with Outliers
  • 7. Dealing with inconsistent capitalization with lower(), upper(), title()
  • 8. Remove blank spaces with strip(), lstrip(), and rstrip()
  • 9. Replace strings with replace() or sub()

  • 17. PART 3 - ChatGPT
  • 1. ChatGPT for Coding
  • 2. ChatGPT for Data Analysis
  • 3. ChatGPT for Automation
  • 4. Automating Web Scraping with GPT-4
  • 5. ChatGPT Code Interpreter
  • 6. How to work with chatgpt code interpreter
  • 7. Code Interterpreter Uploads
  • 8. ChatGPT Code Interpreter - First Look
  • 9. Web Scraping with Code Interpreter
  • 10. Automate Excel Reporting with the Code Interpreter
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 37441
    حجم: 7431 مگابایت
    مدت زمان: 1147 دقیقه
    تاریخ انتشار: 20 مرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید