در حال حاضر محصولی در سبد خرید شما وجود ندارد.
As more and more ML models are developed and deployed, the need arises to ensure that the models are effective and safe and that they perform as desired. Model monitoring, a core function of MLOps, helps data scientists and MLOps engineers to meet this need. In this course, data analytics expert Kumaran Ponnambalam discusses the types of monitoring needed for ML models. He deep dives into model drift monitoring and bias. For model drift, Kumaran goes over the types of drift monitoring and their causes. He explains different techniques for drift monitoring and how to execute them in python using open source libraries. For bias, Kumaran highlights various sources of bias and their impact. He also analyzes bias in python with open source libraries. Finally, he recommends some best practices for drift and bias monitoring.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Edge AI: Tools and Best Practices for Building AI Applications at the Edge
شبکه های عصبی مکرر
یادگیری عمیق: بهینه سازی و تنظیم مدل
LLM Foundations: Building Effective Applications for Enterprises
Big Data Analytics with Hadoop and Apache Spark
Agentic AI for Developers: Concepts and Application for Enterprises
آموزش پردازش استریم ها بوسیله Spark
MLOps Essentials: Model Development and Integration
آموزش ضروری Apache Kafka : شروع به کار
آموزش پردازش داده ها بوسیله دستورات SQL در Apache Flink
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها