در حال حاضر محصولی در سبد خرید شما وجود ندارد.

As more and more ML models are developed and deployed, the need arises to ensure that the models are effective and safe and that they perform as desired. Model monitoring, a core function of MLOps, helps data scientists and MLOps engineers to meet this need. In this course, data analytics expert Kumaran Ponnambalam discusses the types of monitoring needed for ML models. He deep dives into model drift monitoring and bias. For model drift, Kumaran goes over the types of drift monitoring and their causes. He explains different techniques for drift monitoring and how to execute them in python using open source libraries. For bias, Kumaran highlights various sources of bias and their impact. He also analyzes bias in python with open source libraries. Finally, he recommends some best practices for drift and bias monitoring.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

تجزیه و تحلیل متن و پیش بینی بوسیله کدنویسی در زبان Python

LLM Foundations: Vector Databases for Caching and Retrieval Augmented Generation (RAG)

Applied AI: Building NLP Apps with Hugging Face Transformers

MLOps Essentials: Model Deployment and Monitoring

آموزش آنالیز متون بوسیله زبان R

Data Science on Google Cloud Platform: Predictive Analytics

یادگیری عمیق: شروع به کار

Hands-On Agentic AI: Building AI Agents with LlamaIndex

Data Science on Google Cloud Platform: Exploratory Data Analytics

آموزش پردازش استریم ها بوسیله Kafka Streams
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها