در حال حاضر محصولی در سبد خرید شما وجود ندارد.
As more and more ML models are developed and deployed, the need arises to ensure that the models are effective and safe and that they perform as desired. Model monitoring, a core function of MLOps, helps data scientists and MLOps engineers to meet this need. In this course, data analytics expert Kumaran Ponnambalam discusses the types of monitoring needed for ML models. He deep dives into model drift monitoring and bias. For model drift, Kumaran goes over the types of drift monitoring and their causes. He explains different techniques for drift monitoring and how to execute them in python using open source libraries. For bias, Kumaran highlights various sources of bias and their impact. He also analyzes bias in python with open source libraries. Finally, he recommends some best practices for drift and bias monitoring.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Edge AI: Tools and Best Practices for Building AI Applications at the Edge
Agentic AI for Developers: Concepts and Application for Enterprises
آموزش آنالیز متون بوسیله زبان R
آموزش پردازش استریم ها بوسیله Kafka Streams
آموزش پردازش و مهندسی داده ها به صورت Real-Time بوسیله Apache Flink
Apache Kafka Essential Training: Building Scalable Applications
معماری برنامه های بیگ دیتا: مهندسی برنامه Real-Time
آموزش انجام تحلیل های پیشرفته با MySQL
Architecting Big Data Applications: Batch Mode Application Engineering
معماری برنامه های کاربردی داده های بزرگ