وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

MLOps Bootcamp: Mastering AI Operations for Success – AIOps

سرفصل های دوره

Unlock success in AI Operations with our MLOps Bootcamp – mastering tools,techniques, AIOps for cutting-edge expertise


1. Introduction to Complete MLOps Bootcamp
  • 1. What and Why MLOps
  • 2. The Stages of MLOps

  • 2. Python for MLOps
  • 1. About the Section
  • 2. Python Quiz.html
  • 3. Introduction to Python Programming
  • 4. Install Anaconda
  • 5. Hello World - Python
  • 6. Jupyter Lab Quick Tour
  • 7. Variables in Python
  • 8. Variables - Comments - Markdown Cells - Hands On
  • 9. Python Literals - Hands On
  • 10. Operators in Python Programming Language
  • 11. Collection - Strings
  • 12. Python String - Builtin Functions - Hands On
  • 13. Data Structures - List
  • 14. Data Structures - Tuples
  • 15. Data Structures - Dictionary
  • 16. Data Structures - Sets
  • 17. Explicit and Implicit Casting in Python Programming
  • 18. Reading the Input from Keyboard
  • 19. String Formatting
  • 20. Control Statements - Conditional Statements in Python
  • 21. Control Statements - Looping Statements
  • 22. List comprehension
  • 23. Functions
  • 24. Modules in Python
  • 25. Classes in Python
  • 26. File Handling in Python
  • 27. Working with Python Scripts
  • 28. Libraries in Python

  • 3. Git and Github Fundamentals for MLOps
  • 1. Introduction to Version Control Systems
  • 2. Getting Started with git
  • 3. Local Repo vs Remote Repo
  • 4. Git Configurations
  • 5. Getting Started with Local Repo
  • 6. Concept of Working Directory - Staging Area - Commit
  • 7. Git Workflow - Local Repo
  • 8. Git Branch
  • 9. Switching the Branches
  • 10. Merging
  • 11. Checking Out Commits
  • 12. Git Hosting Services
  • 13. Working with Remote Repositories
  • 14. Cloning and Delete Branches
  • 15. 3 way merge
  • 16. Summary

  • 4. Crash Course on YAML
  • 1. YAML Crash Course

  • 5. Packaging the ML Models
  • 1. Introduction to Packaging the ML Models
  • 2. Typical Experimentation with Dataset
  • 3. Model fit and generate Predictions
  • 4. Challenges in Working inside the Jupyter Notebook
  • 5. Understanding the Modular Programming
  • 6. Creating Folder Hierarchy for ML Project
  • 7. Create Config Module
  • 8. Data Handling Module
  • 9. Data Preprocessing part 1
  • 10. Data Preprocessing part 2
  • 11. sklearn pipeline
  • 12. Training Pipeline
  • 13. Prediction Pipeline
  • 14. Fixes on Python Scripts
  • 15. Add Python Path to MacOS
  • 16. Perform Training and Predictions
  • 17. Requirements txt file
  • 18. Testing the New Virtual Environments
  • 19. Create Python tests
  • 20. Running Pytest
  • 21. Create Manifest file
  • 22. Create Version File
  • 23. Create setup.py
  • 24. Packagiing the ML Model & testing
  • 25. Summary

  • 6. Mlflow - Manage ML experiments
  • 1. Introduction to Mlflow
  • 2. Getting System Ready with mlflow
  • 3. Logging Functions of Mlflow Tracking
  • 4. Basic Mlflow tutorial
  • 5. Exploration of mlflow
  • 6. Machine Learning Experiement on MLFlow
  • 7. Create ML Model for Loan Prediction
  • 8. MLFlow Project
  • 9. MLFlow Models
  • 10. Setting Up MySql Database Locally
  • 11. Log Model Metrics in MySql
  • 12. Register the Model & Serve the Model
  • 13. Summary

  • 7. Docker for Machine Learning
  • 1. Docker for Machine Learning
  • 2. Introduction to Docker
  • 3. Installation of Docker Desktop
  • 4. Working with Docker
  • 5. Running the Docker Container
  • 6. Working with Dockerfile
  • 7. Push the Docker Image to DockerHub
  • 8. Dockerize the ML Model
  • 9. Packaging the training code in Docker Environment & Summary

  • 8. Build MLApps using FastAPI
  • 1. What is API, REST and REST API
  • 2. How REST API Works
  • 3. What is FastAPI
  • 4. Crash course on FastAPI
  • 5. Data Validation with Pydantic
  • 6. Deploying the Machine Learning Model with FastAPI

  • 9. Build MLApps using Streamlit
  • 1. Introduction to Streamit
  • 2. Hands On Working with Streamlit
  • 3. Building the ML Model with Streamlit

  • 10. Lnux Operating System for DevOps and Data Scientists
  • 1. Agenda of this section
  • 2. Linux Features & Bash
  • 3. How to Launch EC2 Instances (Quick Refresh)
  • 4. Basic Linux Commands of Linux

  • 11. Working with CI CD Tool Jenkins
  • 1. Introduction to Jenkins
  • 2. How do we Use Jenkins in MLOps
  • 3. Prepare and Package ML Model
  • 4. Deploy as API with FASTAPI
  • 5. Test FastAPI App
  • 6. Create Dockerfile
  • 7. Exposing the Application Port as per Dockerfile
  • 8. Test Locally using Docker Containers
  • 9. Installation of Jenkins on AWS EC2 Instances
  • 10. Installation of Docker in EC2 Instance
  • 11. Configure Github Repo - Webhook - Jenkins Credentials
  • 12. Introduction to Jenkins FreeStyle Projects and Pipeline Jobs
  • 13. Exploration of Jenkins UI
  • 14. Create your first First Jenkins Project
  • 15. Test Github Webhook with Jenkins
  • 16. Installation of Docker Plugin & System Readiness
  • 17. Setup Email Notification with Gmail
  • 18. Introduction to CI CT CD Pipeline
  • 19. Create CI CT CD Pipeline - Github Dockerhub
  • 20. Create CI CT CD Pipeline - Training
  • 21. Create CI CT CD Pipeline - Testing
  • 22. Create CI CT CD Pipeline - Deployment
  • 23. Perform Test of Pipeline
  • 24. Summary

  • 12. Monitoring and Debugging of ML System
  • 1. Why Monitoring Machine Learning Models is Important
  • 2. What is Monitoring of ML models & When to Update Model in Production
  • 3. Why Monitoring Machine Learning Models is Difficult
  • 4. Challenge - Who Owns what
  • 5. Functional Level Monitoring
  • 6. Model Drift
  • 7. Operational Level Monitoring
  • 8. Tools and Best Practices of Machine Learning Model Monitoring

  • 13. Continuous Monitoring with Prometheus
  • 1. Introduction to Continuous Monitoring
  • 2. Use case on Continuous Monitoring
  • 3. Introduction to Prometheus
  • 4. Architecture of Prometheus
  • 5. Metric Types of Prometheus
  • 6. Installation of Prometheus
  • 7. Introduction Grafana
  • 8. Installation of Grafana
  • 9. Prometheus Configuration file
  • 10. Exploring the Basic Querying Prometheus
  • 11. Monitor the Infrastructure with Prometheus
  • 12. Monitor the Linux Server with Node Exporter
  • 13. Monitor the Client Application using Prometheus
  • 14. Monitor the FastAPI Application using Prometheus
  • 15. Monitor All EndPoints using Prometheus
  • 16. Create Visualization with Grafana
  • 17. Trigger Alerts with Grafana

  • 14. Deploy Applications with Docker Compose
  • 1. Introduction to Docker Compose
  • 2. Hands On - Docker Compose with Flask Application
  • 3. Hands On - Docker Compose Prometheus Grafana

  • 15. Continuous Monitoring of Machine Learning Application
  • 1. Architecture of ML Application Monitoring
  • 2. Hands On Monitoring of ML Application using Prometheus

  • 16. Monitor the ML System with WhyLogs
  • 1. Introduction to ML Monitoring
  • 2. Setting Up WhyLabs
  • 3. Whylogs - Drift Detection, Input, Output, Bias Monitoring
  • 4. WhyLogs - Constraints and Drift Reports
  • 5. Summary

  • 17. Post Productionizing ML Models
  • 1. Post-Productionalizing ML Models - What Next
  • 2. Model Security
  • 3. Adversarial Attack
  • 4. Data Poisoning Attack
  • 5. Distributed Denial of Service Attack (DDOS)
  • 6. Data Privacy Attack
  • 7. How to Mitigate Risk of Model Attacks
  • 8. AB Testing
  • 9. Future of MLOps

  • 18. Reference Getting Started with AWS
  • 1. What do we cover in this section
  • 2. Create AWS Account
  • 3. Setting up MFA on Root Account
  • 4. Create IAM Account and Account Alias
  • 5. Setup CLI with Credentials
  • 6. IAM Policy
  • 7. IAM Policy generator & attachment
  • 8. Delete the IAM User
  • 9. S3 Bucket and Storage Classes
  • 10. Creation of S3 Bucket from Console
  • 11. Creation of S3 Bucket from CLI
  • 12. Version Enablement in S3
  • 13. Introduction EC2 instances
  • 14. Launch EC2 instance & SSH into EC2 Instances
  • 15. Clean Up Activity

  • 19. Python for Data Science - Numpy - Pandas - Matplotlib - (Optional Section)
  • 1. Introduction to Numpy Library
  • 2. Basics of numpy array object
  • 3. Import Numpy & Access help
  • 4. Creation of Array Object - np.array()
  • 5. Attributes of Numpy Array
  • 6. Array Indexing and Slicing
  • 7. Array Creation Functions
  • 8. Copy Arrays
  • 9. Mathematical Operation on Numpy Arrays
  • 10. Linear Algebra Functions in Numpy
  • 11. Shape Modification of Arrays
  • 12. np.arange()
  • 13. Relational Operators & Aggregation Functions on Numpy Arrays
  • 14. Boolean Masking
  • 15. Broadcasting on Numpy Arrays
  • 16. Summary of Numpy Library Journey
  • 17. Introduction to Pandas
  • 18. Working with Pandas Series
  • 19. Mathematical Operation on Pandas Series
  • 20. Dataframes in Pandas
  • 21. Working with Data in Pandas DataFrame
  • 22. Combining the DataFrames
  • 23. Other Functions on Pandas DataFrame
  • 24. Advanced Functions in Pandas DataFrame
  • 25. Introduction to EDA
  • 26. Accessing Google Colab
  • 27. Loading the Large Dataset for Working
  • 28. Preliminary Analysis on DataFrame
  • 29. Null values in the Dataframe
  • 30. Data Cleaning
  • 31. Introduction to Data Visualization
  • 32. Matplotlib Basics
  • 33. Types of Plot - Line plot
  • 34. Line Plots Hands On
  • 35. Adjusting the Plots
  • 36. Plot Adjustment Hands On
  • 37. Scatter Plot
  • 38. Scatter Plot hands on
  • 39. Historgram Plot
  • 40. Introduction to Seaborn
  • 41. Exploring the data
  • 42. Univariate & Bivariate Plots - Continuous Data
  • 43. Plot - Categorical Data
  • 44. Advanced Plots in Seaborn
  • 45. Which Plot to use

  • 20. Appendix
  • 1. MLOps with MLFlow in 1 Hour
  • 2. Kubernetes 101 Part 1
  • 3. Kubernetes 101 Part 2
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 33489
    حجم: 16358 مگابایت
    مدت زمان: 2216 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید