وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

MLOps Bootcamp: Mastering AI Operations for Success – AIOps

سرفصل های دوره

Unlock success in AI Operations with our MLOps Bootcamp – mastering tools,techniques, AIOps for cutting-edge expertise


1. Introduction to Complete MLOps Bootcamp
  • 1. What and Why MLOps
  • 2. The Stages of MLOps

  • 2. Python for MLOps
  • 1. About the Section
  • 2. Python Quiz.html
  • 3. Introduction to Python Programming
  • 4. Install Anaconda
  • 5. Hello World - Python
  • 6. Jupyter Lab Quick Tour
  • 7. Variables in Python
  • 8. Variables - Comments - Markdown Cells - Hands On
  • 9. Python Literals - Hands On
  • 10. Operators in Python Programming Language
  • 11. Collection - Strings
  • 12. Python String - Builtin Functions - Hands On
  • 13. Data Structures - List
  • 14. Data Structures - Tuples
  • 15. Data Structures - Dictionary
  • 16. Data Structures - Sets
  • 17. Explicit and Implicit Casting in Python Programming
  • 18. Reading the Input from Keyboard
  • 19. String Formatting
  • 20. Control Statements - Conditional Statements in Python
  • 21. Control Statements - Looping Statements
  • 22. List comprehension
  • 23. Functions
  • 24. Modules in Python
  • 25. Classes in Python
  • 26. File Handling in Python
  • 27. Working with Python Scripts
  • 28. Libraries in Python

  • 3. Git and Github Fundamentals for MLOps
  • 1. Introduction to Version Control Systems
  • 2. Getting Started with git
  • 3. Local Repo vs Remote Repo
  • 4. Git Configurations
  • 5. Getting Started with Local Repo
  • 6. Concept of Working Directory - Staging Area - Commit
  • 7. Git Workflow - Local Repo
  • 8. Git Branch
  • 9. Switching the Branches
  • 10. Merging
  • 11. Checking Out Commits
  • 12. Git Hosting Services
  • 13. Working with Remote Repositories
  • 14. Cloning and Delete Branches
  • 15. 3 way merge
  • 16. Summary

  • 4. Crash Course on YAML
  • 1. YAML Crash Course

  • 5. Packaging the ML Models
  • 1. Introduction to Packaging the ML Models
  • 2. Typical Experimentation with Dataset
  • 3. Model fit and generate Predictions
  • 4. Challenges in Working inside the Jupyter Notebook
  • 5. Understanding the Modular Programming
  • 6. Creating Folder Hierarchy for ML Project
  • 7. Create Config Module
  • 8. Data Handling Module
  • 9. Data Preprocessing part 1
  • 10. Data Preprocessing part 2
  • 11. sklearn pipeline
  • 12. Training Pipeline
  • 13. Prediction Pipeline
  • 14. Fixes on Python Scripts
  • 15. Add Python Path to MacOS
  • 16. Perform Training and Predictions
  • 17. Requirements txt file
  • 18. Testing the New Virtual Environments
  • 19. Create Python tests
  • 20. Running Pytest
  • 21. Create Manifest file
  • 22. Create Version File
  • 23. Create setup.py
  • 24. Packagiing the ML Model & testing
  • 25. Summary

  • 6. Mlflow - Manage ML experiments
  • 1. Introduction to Mlflow
  • 2. Getting System Ready with mlflow
  • 3. Logging Functions of Mlflow Tracking
  • 4. Basic Mlflow tutorial
  • 5. Exploration of mlflow
  • 6. Machine Learning Experiement on MLFlow
  • 7. Create ML Model for Loan Prediction
  • 8. MLFlow Project
  • 9. MLFlow Models
  • 10. Setting Up MySql Database Locally
  • 11. Log Model Metrics in MySql
  • 12. Register the Model & Serve the Model
  • 13. Summary

  • 7. Docker for Machine Learning
  • 1. Docker for Machine Learning
  • 2. Introduction to Docker
  • 3. Installation of Docker Desktop
  • 4. Working with Docker
  • 5. Running the Docker Container
  • 6. Working with Dockerfile
  • 7. Push the Docker Image to DockerHub
  • 8. Dockerize the ML Model
  • 9. Packaging the training code in Docker Environment & Summary

  • 8. Build MLApps using FastAPI
  • 1. What is API, REST and REST API
  • 2. How REST API Works
  • 3. What is FastAPI
  • 4. Crash course on FastAPI
  • 5. Data Validation with Pydantic
  • 6. Deploying the Machine Learning Model with FastAPI

  • 9. Build MLApps using Streamlit
  • 1. Introduction to Streamit
  • 2. Hands On Working with Streamlit
  • 3. Building the ML Model with Streamlit

  • 10. Lnux Operating System for DevOps and Data Scientists
  • 1. Agenda of this section
  • 2. Linux Features & Bash
  • 3. How to Launch EC2 Instances (Quick Refresh)
  • 4. Basic Linux Commands of Linux

  • 11. Working with CI CD Tool Jenkins
  • 1. Introduction to Jenkins
  • 2. How do we Use Jenkins in MLOps
  • 3. Prepare and Package ML Model
  • 4. Deploy as API with FASTAPI
  • 5. Test FastAPI App
  • 6. Create Dockerfile
  • 7. Exposing the Application Port as per Dockerfile
  • 8. Test Locally using Docker Containers
  • 9. Installation of Jenkins on AWS EC2 Instances
  • 10. Installation of Docker in EC2 Instance
  • 11. Configure Github Repo - Webhook - Jenkins Credentials
  • 12. Introduction to Jenkins FreeStyle Projects and Pipeline Jobs
  • 13. Exploration of Jenkins UI
  • 14. Create your first First Jenkins Project
  • 15. Test Github Webhook with Jenkins
  • 16. Installation of Docker Plugin & System Readiness
  • 17. Setup Email Notification with Gmail
  • 18. Introduction to CI CT CD Pipeline
  • 19. Create CI CT CD Pipeline - Github Dockerhub
  • 20. Create CI CT CD Pipeline - Training
  • 21. Create CI CT CD Pipeline - Testing
  • 22. Create CI CT CD Pipeline - Deployment
  • 23. Perform Test of Pipeline
  • 24. Summary

  • 12. Monitoring and Debugging of ML System
  • 1. Why Monitoring Machine Learning Models is Important
  • 2. What is Monitoring of ML models & When to Update Model in Production
  • 3. Why Monitoring Machine Learning Models is Difficult
  • 4. Challenge - Who Owns what
  • 5. Functional Level Monitoring
  • 6. Model Drift
  • 7. Operational Level Monitoring
  • 8. Tools and Best Practices of Machine Learning Model Monitoring

  • 13. Continuous Monitoring with Prometheus
  • 1. Introduction to Continuous Monitoring
  • 2. Use case on Continuous Monitoring
  • 3. Introduction to Prometheus
  • 4. Architecture of Prometheus
  • 5. Metric Types of Prometheus
  • 6. Installation of Prometheus
  • 7. Introduction Grafana
  • 8. Installation of Grafana
  • 9. Prometheus Configuration file
  • 10. Exploring the Basic Querying Prometheus
  • 11. Monitor the Infrastructure with Prometheus
  • 12. Monitor the Linux Server with Node Exporter
  • 13. Monitor the Client Application using Prometheus
  • 14. Monitor the FastAPI Application using Prometheus
  • 15. Monitor All EndPoints using Prometheus
  • 16. Create Visualization with Grafana
  • 17. Trigger Alerts with Grafana

  • 14. Deploy Applications with Docker Compose
  • 1. Introduction to Docker Compose
  • 2. Hands On - Docker Compose with Flask Application
  • 3. Hands On - Docker Compose Prometheus Grafana

  • 15. Continuous Monitoring of Machine Learning Application
  • 1. Architecture of ML Application Monitoring
  • 2. Hands On Monitoring of ML Application using Prometheus

  • 16. Monitor the ML System with WhyLogs
  • 1. Introduction to ML Monitoring
  • 2. Setting Up WhyLabs
  • 3. Whylogs - Drift Detection, Input, Output, Bias Monitoring
  • 4. WhyLogs - Constraints and Drift Reports
  • 5. Summary

  • 17. Post Productionizing ML Models
  • 1. Post-Productionalizing ML Models - What Next
  • 2. Model Security
  • 3. Adversarial Attack
  • 4. Data Poisoning Attack
  • 5. Distributed Denial of Service Attack (DDOS)
  • 6. Data Privacy Attack
  • 7. How to Mitigate Risk of Model Attacks
  • 8. AB Testing
  • 9. Future of MLOps

  • 18. Reference Getting Started with AWS
  • 1. What do we cover in this section
  • 2. Create AWS Account
  • 3. Setting up MFA on Root Account
  • 4. Create IAM Account and Account Alias
  • 5. Setup CLI with Credentials
  • 6. IAM Policy
  • 7. IAM Policy generator & attachment
  • 8. Delete the IAM User
  • 9. S3 Bucket and Storage Classes
  • 10. Creation of S3 Bucket from Console
  • 11. Creation of S3 Bucket from CLI
  • 12. Version Enablement in S3
  • 13. Introduction EC2 instances
  • 14. Launch EC2 instance & SSH into EC2 Instances
  • 15. Clean Up Activity

  • 19. Python for Data Science - Numpy - Pandas - Matplotlib - (Optional Section)
  • 1. Introduction to Numpy Library
  • 2. Basics of numpy array object
  • 3. Import Numpy & Access help
  • 4. Creation of Array Object - np.array()
  • 5. Attributes of Numpy Array
  • 6. Array Indexing and Slicing
  • 7. Array Creation Functions
  • 8. Copy Arrays
  • 9. Mathematical Operation on Numpy Arrays
  • 10. Linear Algebra Functions in Numpy
  • 11. Shape Modification of Arrays
  • 12. np.arange()
  • 13. Relational Operators & Aggregation Functions on Numpy Arrays
  • 14. Boolean Masking
  • 15. Broadcasting on Numpy Arrays
  • 16. Summary of Numpy Library Journey
  • 17. Introduction to Pandas
  • 18. Working with Pandas Series
  • 19. Mathematical Operation on Pandas Series
  • 20. Dataframes in Pandas
  • 21. Working with Data in Pandas DataFrame
  • 22. Combining the DataFrames
  • 23. Other Functions on Pandas DataFrame
  • 24. Advanced Functions in Pandas DataFrame
  • 25. Introduction to EDA
  • 26. Accessing Google Colab
  • 27. Loading the Large Dataset for Working
  • 28. Preliminary Analysis on DataFrame
  • 29. Null values in the Dataframe
  • 30. Data Cleaning
  • 31. Introduction to Data Visualization
  • 32. Matplotlib Basics
  • 33. Types of Plot - Line plot
  • 34. Line Plots Hands On
  • 35. Adjusting the Plots
  • 36. Plot Adjustment Hands On
  • 37. Scatter Plot
  • 38. Scatter Plot hands on
  • 39. Historgram Plot
  • 40. Introduction to Seaborn
  • 41. Exploring the data
  • 42. Univariate & Bivariate Plots - Continuous Data
  • 43. Plot - Categorical Data
  • 44. Advanced Plots in Seaborn
  • 45. Which Plot to use

  • 20. Appendix
  • 1. MLOps with MLFlow in 1 Hour
  • 2. Kubernetes 101 Part 1
  • 3. Kubernetes 101 Part 2
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 33489
    حجم: 16358 مگابایت
    مدت زمان: 2216 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید