وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Master Machine Learning in Python with Scikit-Learn

سرفصل های دوره

A comprehensive introduction to machine learning and data science in Python with the scikit-learn library!


1. Introduction and Overview
  • 1.1 01 - Introduction to the Course.pdf
  • 1. Introduction to the Course
  • 2.1 All Course Materials.zip
  • 2. All the material in the course!.html
  • 3.1 Anaconda Homepage.html
  • 3. (Background) Introduction to Jupyter Notebooks
  • 4.1 notebook - introduction and overview.zip
  • 4.2 NumPy Homepage.html
  • 4.3 solution - introduction and overview.zip
  • 4. (Background) Introduction to NumPy
  • 5.1 Pandas Homepage.html
  • 5. (Background) Introduction to Pandas

  • 2. What is Machine Learning
  • 1.1 02 - What is Machine Learning.pdf
  • 1. What is Machine Learning
  • 2. ML Terminology
  • 3. Basic ML Quiz.html
  • 4. Anatomy of a ML Project
  • 5. The Steps in ML.html
  • 6.1 notebook - what is machine learning.zip
  • 6.2 solution - what is machine learning.zip
  • 6. Introducing Scikit Learn
  • 7. Importing a Machine Learning Model.html
  • 8. Exploring the Diabetes Dataset
  • 9. Further Resources.html

  • 3. Our First Model Linear Regression
  • 1.1 03 - Linear Regression.pdf
  • 1. Introduction
  • 2. Idea of Linear Regression
  • 3. The Theory of Linear Regression
  • 4. Linear Regression.html
  • 5.1 notebook - linear regression.zip
  • 5.2 solution - linear regression.zip
  • 5. Linear Regression in Scikit-Learn
  • 6. Your First Linear Regression Model!.html
  • 7. Evaluating the Model
  • 8. Evaluating the Model.html
  • 9. Is our Model any Good
  • 10. Splitting the Data into Training and Testing Sets.html
  • 11. Evaluating using MSE.html
  • 12. How is Training Done (Optional Theory)
  • 13. Further Resources.html

  • 4. Binary Classification with Logistic Regression
  • 1.1 04 - Binary Classification with Logistic Regression.pdf
  • 1. Introduction
  • 2. Binary Classification and Logistic Regression
  • 3. Binary Classification and Logistic Regression.html
  • 4.1 notebook - binary classification with logistic regression.zip
  • 4.2 solution - binary classification with logistic regression.zip
  • 4. The Iris Dataset
  • 5. Implementing Logistic Regression
  • 6. Implementing Logistic Regression.html
  • 7. Accuracy Score
  • 8. Accuracy Score.html
  • 9. Predictors and Accuracy Score.html
  • 10. Further Resources.html

  • 5. Preprocessing and Pipelines
  • 1.1 05 - Preprocessing and Pipelines.pdf
  • 1. Introduction
  • 2. Preprocessing
  • 3. Preprocessing.html
  • 4.1 notebook - preprocessing and pipelines.zip
  • 4.2 solution - preprocessing and pipelines.zip
  • 4. Filling in Missing Values
  • 5. Filling in Missing Values.html
  • 6. Choosing Relevant Features
  • 7. Standard Scaling in Scikit-Learn
  • 8. Standard Scaling.html
  • 9. Pipelines
  • 10. Pipelines.html
  • 11. Further Resources.html

  • 6. Polynomial Regression and Overfitting
  • 1.1 06 - Polynomial Regression and Overfitting.pdf
  • 1. Introduction
  • 2. Understanding Polynomial Regression
  • 3. Polynomial Regression.html
  • 4.1 notebook - polynomial regression and overfitting.zip
  • 4.2 solution - polynomial regression and overfitting.zip
  • 4. Adding Polynomial Features Manually
  • 5. Adding Polynomial Features.html
  • 6. Evaluating with Mean Absolute Error
  • 7. Mean Absolute Error.html
  • 8. Using the Polynomial Features Class
  • 9. Adding Polynomial Features Properly.html
  • 10. Fitting Everything Into a Pipeline
  • 11. Overfitting and Underfitting
  • 12. Overfitting and Underfitting.html
  • 13. Overfitting in Practice
  • 14. Further Resources.html

  • 7. Project 1 - Regression
  • 1.1 07 - Project 1 - Regression.pdf
  • 1.2 notebook - regression project.zip
  • 1.3 solution - regression project.zip
  • 1. Introduction
  • 2. Solution Regression Project

  • 8. Decision Trees and Different Metrics
  • 1.1 08 - Decision Trees and Different Metrics.pdf
  • 1. Introduction
  • 2. Introduction to Trees
  • 3. Decision Trees
  • 4. Trees and Decision Trees.html
  • 5.1 notebook - decision trees and different metrics.zip
  • 5.2 solution - decision trees and different metrics.zip
  • 5. Implementing Decision Trees
  • 6. Decision Trees for Regression.html
  • 7. False Positives and False Negatives
  • 8. Understanding Precision and Recall
  • 9. Unbalanced Datasets.html
  • 10. Using Precision and Recall
  • 11. Finding Precision of a Decision Tree.html
  • 12. Further Resources.html

  • 9. Ensemble Learning and Random Forests
  • 1.1 09 - Ensemble Learning and Random Forests.pdf
  • 1. Introduction
  • 2. What is Ensemble Learning
  • 3. Ensemble Learning.html
  • 4.1 notebook - ensemble learning and random forests.zip
  • 4.2 solution - ensemble learning and random forests.zip
  • 4. Creating Multiple Models Fast
  • 5. Creating an Ensemble Majority Vote
  • 6. Training and Fitting Multiple Models.html
  • 7. Weak Learners and Bagging
  • 8. Weak Learners and Bagging.html
  • 9. Using Random Forests
  • 10. Random Forests.html
  • 11. Further Resources.html

  • 10. One-Hot-Encoding and Cross-Validation
  • 1.1 10 - One-Hot-Encoding and Cross-Validation.pdf
  • 1. Introduction
  • 2. One Hot Encoding
  • 3. One Hot Encoding.html
  • 4.1 notebook - one-hot-encoding and cross-validation.zip
  • 4.2 solution - one-hot-encoding and cross-validation.zip
  • 4. Using One Hot Encoding
  • 5. Using One Hot Encoding.html
  • 6. Cross-Validation
  • 7. Using Cross-Validation
  • 8. Using Cross-Validation.html
  • 9. Validation and Test Set
  • 10. Validation, Test Set, and Cross-Validation.html
  • 11. One Hot Encoding and Pipelines
  • 12. Cross-Validation and Pipelines
  • 13. Cross-Validation and Pipelines.html
  • 14. Further Resources.html

  • 11. Regularization and the Bias-Variance Tradeoff
  • 1.1 11 - Regularization and the Bias-Variance Tradeoff.pdf
  • 1. Introduction
  • 2. Regularization (or Shrinkage)
  • 3. Regularization (or Shrinkage).html
  • 4.1 cleaned tips.csv
  • 4.2 notebook - regularization and the bias-variance tradeoff.zip
  • 4.3 solution - regularization and the bias-variance tradeoff.zip
  • 4. Lasso and Ridge Regression
  • 5. Trying out Ridge Regression.html
  • 6. Bias-Variance Tradeoff
  • 7. Bias and Variance.html
  • 8. Finding a Good Parameter Value
  • 9. Further Resources.html

  • 12. SVMs and Hyperparameters
  • 1.1 12 - SVMs and Hyperparameters.pdf
  • 1. Introduction
  • 2. Support Vector Machine
  • 3. Support Vector Machine.html
  • 4.1 notebook - support vector machines and hyperparameters.zip
  • 4.2 solution - support vector machines and hyperparameters.zip
  • 4. Implementing SVM
  • 5. Hyperparameters
  • 6. SVMs and Hyperparameters.html
  • 7. Implementing Grid Search
  • 8. Implementing Grid Search.html
  • 9. Further Resources.html

  • 13. Project 2 - Classification
  • 1.1 13 - Project 2 - Classification.pdf
  • 1.2 notebook - classification project.zip
  • 1.3 solution - classification project.zip
  • 1. Introduction
  • 2. Solution Classification Project

  • 14. Dimentionality Reduction Techniques
  • 1.1 14 - Dimensionality Reduction Techniques.pdf
  • 1. Introduction
  • 2. Dimensionality Reduction
  • 3. Dimensionality Reduction.html
  • 4.1 notebook - dimensionality reduction techniques.zip
  • 4.2 solution - dimensionality reduction techniques.zip
  • 4. Introducing the CovType Dataset
  • 5. Reduction Based on Correlation
  • 6. Reduction Based on Variance
  • 7. Using VarianceThreshold to Reduce Dimensionality.html
  • 8. Principal Component Analysis (PCA)
  • 9. Principal Component Analysis.html
  • 10. Implementing PCA
  • 11. Implementing PCA.html
  • 12. Further Resources.html

  • 15. KNN and Model Persistence
  • 1.1 15 - KNN and Model Persistence.pdf
  • 1. Introduction
  • 2. K-Nearest Neighbors
  • 3. K-Nearest Neighbors.html
  • 4.1 notebook - knn and model persistence.zip
  • 4.2 solution - knn and model persistence.zip
  • 4. Implementing KNN
  • 5. Implementing KNN.html
  • 6. Model Persistence
  • 7. Using Model Persistence
  • 8. Model Persistence.html
  • 9. Further Resources.html

  • 16. The Basics of Neural Networks
  • 1.1 16 - The Basics of Neural Networks.pdf
  • 1. Introduction
  • 2. What are Neural Networks
  • 3. What are Neural Networks.html
  • 4. Weights and Activation Functions
  • 5. Weights and Activation Functions.html
  • 6.1 notebook - the basics of neural networks.zip
  • 6.2 solution - the basics of neural networks.zip
  • 6. Basic Usage of MLPClassifier
  • 7.1 Keras Homepage.html
  • 7. Parameters and Keras
  • 8. Parameters and Keras.html
  • 9. Further Resources.html

  • 17. Intro to Unsupervised ML
  • 1.1 17 - Intro to Unsupervised ML.pdf
  • 1. Introduction
  • 2. What is Unsupervised Learning
  • 3. What is Unsupervised Learning.html
  • 4. K-Means Clustering
  • 5.1 notebook - intro to unsupervised ml.zip
  • 5.2 solution - intro to unsupervised ml.zip
  • 5. Implementing K-Means Clustering
  • 6. Implementing K-Means Clustering.html
  • 7. Further Resources.html

  • 18. Project 3 - Unsupervised
  • 1.1 18 - Project 3 - Unsupervised ML.pdf
  • 1.2 Dataset Description.html
  • 1.3 notebook - unsupervised project.zip
  • 1.4 Sales Transactions Dataset Weekly.csv
  • 1.5 solution - unsupervised project.zip
  • 1. Introduction
  • 2.1 module 18 - unsupervised project solution.zip
  • 2. Solution Unsupervised Project

  • 19. Further Resources and Goodbye
  • 1.1 19 - The End of Our Journey.pdf
  • 1.2 Hands on Machine Learning Book.html
  • 1.3 Kaggle.html
  • 1. The End of Our Journey
  • 189,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 19148
    حجم: 3391 مگابایت
    مدت زمان: 540 دقیقه
    تاریخ انتشار: ۲۰ شهریور ۱۴۰۲
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    189,000 تومان
    افزودن به سبد خرید