وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Master Machine Learning in Python with Scikit-Learn

سرفصل های دوره

A comprehensive introduction to machine learning and data science in Python with the scikit-learn library!


1. Introduction and Overview
  • 1.1 01 - Introduction to the Course.pdf
  • 1. Introduction to the Course
  • 2.1 All Course Materials.zip
  • 2. All the material in the course!.html
  • 3.1 Anaconda Homepage.html
  • 3. (Background) Introduction to Jupyter Notebooks
  • 4.1 notebook - introduction and overview.zip
  • 4.2 NumPy Homepage.html
  • 4.3 solution - introduction and overview.zip
  • 4. (Background) Introduction to NumPy
  • 5.1 Pandas Homepage.html
  • 5. (Background) Introduction to Pandas

  • 2. What is Machine Learning
  • 1.1 02 - What is Machine Learning.pdf
  • 1. What is Machine Learning
  • 2. ML Terminology
  • 3. Basic ML Quiz.html
  • 4. Anatomy of a ML Project
  • 5. The Steps in ML.html
  • 6.1 notebook - what is machine learning.zip
  • 6.2 solution - what is machine learning.zip
  • 6. Introducing Scikit Learn
  • 7. Importing a Machine Learning Model.html
  • 8. Exploring the Diabetes Dataset
  • 9. Further Resources.html

  • 3. Our First Model Linear Regression
  • 1.1 03 - Linear Regression.pdf
  • 1. Introduction
  • 2. Idea of Linear Regression
  • 3. The Theory of Linear Regression
  • 4. Linear Regression.html
  • 5.1 notebook - linear regression.zip
  • 5.2 solution - linear regression.zip
  • 5. Linear Regression in Scikit-Learn
  • 6. Your First Linear Regression Model!.html
  • 7. Evaluating the Model
  • 8. Evaluating the Model.html
  • 9. Is our Model any Good
  • 10. Splitting the Data into Training and Testing Sets.html
  • 11. Evaluating using MSE.html
  • 12. How is Training Done (Optional Theory)
  • 13. Further Resources.html

  • 4. Binary Classification with Logistic Regression
  • 1.1 04 - Binary Classification with Logistic Regression.pdf
  • 1. Introduction
  • 2. Binary Classification and Logistic Regression
  • 3. Binary Classification and Logistic Regression.html
  • 4.1 notebook - binary classification with logistic regression.zip
  • 4.2 solution - binary classification with logistic regression.zip
  • 4. The Iris Dataset
  • 5. Implementing Logistic Regression
  • 6. Implementing Logistic Regression.html
  • 7. Accuracy Score
  • 8. Accuracy Score.html
  • 9. Predictors and Accuracy Score.html
  • 10. Further Resources.html

  • 5. Preprocessing and Pipelines
  • 1.1 05 - Preprocessing and Pipelines.pdf
  • 1. Introduction
  • 2. Preprocessing
  • 3. Preprocessing.html
  • 4.1 notebook - preprocessing and pipelines.zip
  • 4.2 solution - preprocessing and pipelines.zip
  • 4. Filling in Missing Values
  • 5. Filling in Missing Values.html
  • 6. Choosing Relevant Features
  • 7. Standard Scaling in Scikit-Learn
  • 8. Standard Scaling.html
  • 9. Pipelines
  • 10. Pipelines.html
  • 11. Further Resources.html

  • 6. Polynomial Regression and Overfitting
  • 1.1 06 - Polynomial Regression and Overfitting.pdf
  • 1. Introduction
  • 2. Understanding Polynomial Regression
  • 3. Polynomial Regression.html
  • 4.1 notebook - polynomial regression and overfitting.zip
  • 4.2 solution - polynomial regression and overfitting.zip
  • 4. Adding Polynomial Features Manually
  • 5. Adding Polynomial Features.html
  • 6. Evaluating with Mean Absolute Error
  • 7. Mean Absolute Error.html
  • 8. Using the Polynomial Features Class
  • 9. Adding Polynomial Features Properly.html
  • 10. Fitting Everything Into a Pipeline
  • 11. Overfitting and Underfitting
  • 12. Overfitting and Underfitting.html
  • 13. Overfitting in Practice
  • 14. Further Resources.html

  • 7. Project 1 - Regression
  • 1.1 07 - Project 1 - Regression.pdf
  • 1.2 notebook - regression project.zip
  • 1.3 solution - regression project.zip
  • 1. Introduction
  • 2. Solution Regression Project

  • 8. Decision Trees and Different Metrics
  • 1.1 08 - Decision Trees and Different Metrics.pdf
  • 1. Introduction
  • 2. Introduction to Trees
  • 3. Decision Trees
  • 4. Trees and Decision Trees.html
  • 5.1 notebook - decision trees and different metrics.zip
  • 5.2 solution - decision trees and different metrics.zip
  • 5. Implementing Decision Trees
  • 6. Decision Trees for Regression.html
  • 7. False Positives and False Negatives
  • 8. Understanding Precision and Recall
  • 9. Unbalanced Datasets.html
  • 10. Using Precision and Recall
  • 11. Finding Precision of a Decision Tree.html
  • 12. Further Resources.html

  • 9. Ensemble Learning and Random Forests
  • 1.1 09 - Ensemble Learning and Random Forests.pdf
  • 1. Introduction
  • 2. What is Ensemble Learning
  • 3. Ensemble Learning.html
  • 4.1 notebook - ensemble learning and random forests.zip
  • 4.2 solution - ensemble learning and random forests.zip
  • 4. Creating Multiple Models Fast
  • 5. Creating an Ensemble Majority Vote
  • 6. Training and Fitting Multiple Models.html
  • 7. Weak Learners and Bagging
  • 8. Weak Learners and Bagging.html
  • 9. Using Random Forests
  • 10. Random Forests.html
  • 11. Further Resources.html

  • 10. One-Hot-Encoding and Cross-Validation
  • 1.1 10 - One-Hot-Encoding and Cross-Validation.pdf
  • 1. Introduction
  • 2. One Hot Encoding
  • 3. One Hot Encoding.html
  • 4.1 notebook - one-hot-encoding and cross-validation.zip
  • 4.2 solution - one-hot-encoding and cross-validation.zip
  • 4. Using One Hot Encoding
  • 5. Using One Hot Encoding.html
  • 6. Cross-Validation
  • 7. Using Cross-Validation
  • 8. Using Cross-Validation.html
  • 9. Validation and Test Set
  • 10. Validation, Test Set, and Cross-Validation.html
  • 11. One Hot Encoding and Pipelines
  • 12. Cross-Validation and Pipelines
  • 13. Cross-Validation and Pipelines.html
  • 14. Further Resources.html

  • 11. Regularization and the Bias-Variance Tradeoff
  • 1.1 11 - Regularization and the Bias-Variance Tradeoff.pdf
  • 1. Introduction
  • 2. Regularization (or Shrinkage)
  • 3. Regularization (or Shrinkage).html
  • 4.1 cleaned tips.csv
  • 4.2 notebook - regularization and the bias-variance tradeoff.zip
  • 4.3 solution - regularization and the bias-variance tradeoff.zip
  • 4. Lasso and Ridge Regression
  • 5. Trying out Ridge Regression.html
  • 6. Bias-Variance Tradeoff
  • 7. Bias and Variance.html
  • 8. Finding a Good Parameter Value
  • 9. Further Resources.html

  • 12. SVMs and Hyperparameters
  • 1.1 12 - SVMs and Hyperparameters.pdf
  • 1. Introduction
  • 2. Support Vector Machine
  • 3. Support Vector Machine.html
  • 4.1 notebook - support vector machines and hyperparameters.zip
  • 4.2 solution - support vector machines and hyperparameters.zip
  • 4. Implementing SVM
  • 5. Hyperparameters
  • 6. SVMs and Hyperparameters.html
  • 7. Implementing Grid Search
  • 8. Implementing Grid Search.html
  • 9. Further Resources.html

  • 13. Project 2 - Classification
  • 1.1 13 - Project 2 - Classification.pdf
  • 1.2 notebook - classification project.zip
  • 1.3 solution - classification project.zip
  • 1. Introduction
  • 2. Solution Classification Project

  • 14. Dimentionality Reduction Techniques
  • 1.1 14 - Dimensionality Reduction Techniques.pdf
  • 1. Introduction
  • 2. Dimensionality Reduction
  • 3. Dimensionality Reduction.html
  • 4.1 notebook - dimensionality reduction techniques.zip
  • 4.2 solution - dimensionality reduction techniques.zip
  • 4. Introducing the CovType Dataset
  • 5. Reduction Based on Correlation
  • 6. Reduction Based on Variance
  • 7. Using VarianceThreshold to Reduce Dimensionality.html
  • 8. Principal Component Analysis (PCA)
  • 9. Principal Component Analysis.html
  • 10. Implementing PCA
  • 11. Implementing PCA.html
  • 12. Further Resources.html

  • 15. KNN and Model Persistence
  • 1.1 15 - KNN and Model Persistence.pdf
  • 1. Introduction
  • 2. K-Nearest Neighbors
  • 3. K-Nearest Neighbors.html
  • 4.1 notebook - knn and model persistence.zip
  • 4.2 solution - knn and model persistence.zip
  • 4. Implementing KNN
  • 5. Implementing KNN.html
  • 6. Model Persistence
  • 7. Using Model Persistence
  • 8. Model Persistence.html
  • 9. Further Resources.html

  • 16. The Basics of Neural Networks
  • 1.1 16 - The Basics of Neural Networks.pdf
  • 1. Introduction
  • 2. What are Neural Networks
  • 3. What are Neural Networks.html
  • 4. Weights and Activation Functions
  • 5. Weights and Activation Functions.html
  • 6.1 notebook - the basics of neural networks.zip
  • 6.2 solution - the basics of neural networks.zip
  • 6. Basic Usage of MLPClassifier
  • 7.1 Keras Homepage.html
  • 7. Parameters and Keras
  • 8. Parameters and Keras.html
  • 9. Further Resources.html

  • 17. Intro to Unsupervised ML
  • 1.1 17 - Intro to Unsupervised ML.pdf
  • 1. Introduction
  • 2. What is Unsupervised Learning
  • 3. What is Unsupervised Learning.html
  • 4. K-Means Clustering
  • 5.1 notebook - intro to unsupervised ml.zip
  • 5.2 solution - intro to unsupervised ml.zip
  • 5. Implementing K-Means Clustering
  • 6. Implementing K-Means Clustering.html
  • 7. Further Resources.html

  • 18. Project 3 - Unsupervised
  • 1.1 18 - Project 3 - Unsupervised ML.pdf
  • 1.2 Dataset Description.html
  • 1.3 notebook - unsupervised project.zip
  • 1.4 Sales Transactions Dataset Weekly.csv
  • 1.5 solution - unsupervised project.zip
  • 1. Introduction
  • 2.1 module 18 - unsupervised project solution.zip
  • 2. Solution Unsupervised Project

  • 19. Further Resources and Goodbye
  • 1.1 19 - The End of Our Journey.pdf
  • 1.2 Hands on Machine Learning Book.html
  • 1.3 Kaggle.html
  • 1. The End of Our Journey
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 19148
    حجم: 3391 مگابایت
    مدت زمان: 540 دقیقه
    تاریخ انتشار: 20 شهریور 1402
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید