وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning with Python: A Mathematical Perspective

سرفصل های دوره

Classification, Clustering, Regression Analysis


1. Machine Learning Training Simple Machine Learning Algorithms for Classification
  • 1. Introduction and Configuration
  • 2. The three different types of machine learning
  • 3. Supervised Machine Learning Classification and Regression
  • 4. Unsupervised Machine Learning Reinforcement Learning
  • 5. Introduction to the basic terminology, notations and roadmap
  • 6. Training Simple Machine Learning Algorithms for Classification
  • 7. Implementing a perception learning algorithm in Python
  • 8. Implementing a perceptron learning algorithm in Python
  • 9. Training a perceptron model on the Iris dataset
  • 10. Perceptron Training Prediction
  • 11. Perceptron Decision Boundaries
  • 12. Adaptive linear neurons and the convergence of learning
  • 13. Adaptive linear neurons and the convergence of learning
  • 14.zip

  • 2. A Tour of Machine Learning Classifiers Using scikit-learn
  • 1. First steps with scikit-learn training a perceptron
  • 2. Modeling class probabilities via logistic regression
  • 3. Maximum margin classification with support vector machines
  • 4. Solving nonlinear problems using a kernel SVM
  • 5. Decision tree learning
  • 6. K-nearest neighbors a lazy learning algorithm
  • 7.zip

  • 3. Regression Analysis
  • 1. Predicting Continuous Target Variables with Regression Analysis
  • 2. Exploring the Housing dataset
  • 3. Visualizing the important characteristics of a dataset
  • 4. Implementing an ordinary least squares linear regression model
  • 5. Estimating the coefficient of a regression model via scikit-learn
  • 6. Fitting a robust regression model using RANSAC
  • 7. Evaluating the performance of linear regression models
  • 8. Using regularized methods for regression
  • 9. Turning a linear regression model into a curve polynomial regression
  • 10.zip

  • 4. Dealing with nonlinear relationships Working with Unlabeled Data
  • 1. Dealing with nonlinear relationships using random forests
  • 2. Working with Unlabeled Data Clustering Analysis
  • 3. Organizing clusters as a hierarchical tree
  • 4. Locating regions of high density via DBSCAN
  • 5.zip

  • 5. Multilayer Artificial Neural Network and Deep Learning
  • 1. Modeling complex functions with artificial neural networks
  • 2. Classifying handwritten digits
  • 3. Training an artificial neural network
  • 4. About the convergence in neural networks
  • 5. Parallelizing Neural Network Training with TensorFlow
  • 6.zip
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 28152
    حجم: 7331 مگابایت
    مدت زمان: 1279 دقیقه
    تاریخ انتشار: ۱۹ دی ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید