وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning Ops: Google Cloud – Real World Data Science

سرفصل های دوره

From Model Development to Deployment: Streamlining Machine Learning Workflows on Google Cloud


1. Introduction & prerequisites
  • 1.1 Github Repository for the course.html
  • 1. Hello & Introduction
  • 2.1 Discord Server.html
  • 2. Discord Server for this Course
  • 3. Lab-Create GCP Trial Account for the course
  • 4. Lab-Download gcloud-cli & project configuration
  • 5. Course prerequisites and installations
  • 6. Course Overview & section walkthrough
  • 7. GCP Services used in the course

  • 2. Introduction to ML Ops
  • 1. Introduction To ML-Ops
  • 2. Key Components Principles in ML-Ops

  • 3. CICD using GCP CloudBuild,Artifact & Container Registry and CloudRun
  • 1.1 CICD-Section-Source-Code.zip
  • 1. Introduction to CICD on GCP
  • 2. Introduction to GCP Container Registry and Artifact Registry
  • 3. Lab Enable necessary APIs and install modules
  • 4. Introduction To GCP CloudRun for ML Models
  • 5. Overview of Steps for Flask Application - Local development
  • 6. Lab Deploy Flask application using ContainerArtifact Registry and CloudRun
  • 7. Lab Execute PyTest locally using ChatGPT
  • 8. Introduction to GCP CloudBuild Service
  • 9. Lab Deploy Flask application using GCP CloudBuild
  • 10. Lab Setup Cloudbuild Triggers from GitHub Repo
  • 11. XGBoost Model Overview for Coupon Recommendations Model
  • 12. Lab Deploy and implement Model Serving Flask Application and Pytest Locally
  • 13. Lab Deploy ML Model to CloudRun using CloudBuild
  • 14. Overview of AB Testing for ML Models using CloudRun
  • 15. Lab Deploy New Version of ML Model & Update version traffic
  • 16. Assignment - Deploy Bike Rentals Regression Model & perform CICD

  • 4. Continuous Model Training using Cloud Composer-Airflow
  • 1.1 continuous-training-section-source-code.zip
  • 1. Overview of Data science model for Bank Marketing Campaign
  • 2. Introduction to Continuous Training
  • 3. Introduction to Airflow For Continuous Training
  • 4. Lab Create Setup Airflow composer Env and Vertex AI Workbench
  • 5. Lab Execute Model Training using Jupyter-Nbk on GCP
  • 6. Lab Execute Airflow Dag for Machine Learning Workflow
  • 7. Lab Continuous Training Pipeline in Action
  • 8. Implications of Failure scenarios in Continuous Training
  • 9. Lab Trigger Continuous Training to capture model logs and setup alerting
  • 10. Overview of CICD for Model Training
  • 11. Lab CICD of Model Training Code using Cloud-Build,PyTest and Github
  • 12. Lab Setup CloudBuild triggers
  • 13. Assignment Part-1 Setup Continuous Training for a Marketing ROI Model
  • 14. Assignment Part-2 Perform CICD of the Data Science ROI Model
  • 15. Assignment Part-3 Deploy Model Serving Application to GCP CloudRun

  • 5. Vertex AI For Data Science & Machine Learning
  • 1. Section Overview
  • 2. Introduction to Vertex AI Model Training Service
  • 3. Overview of Bike Share Rentals Regression Model
  • 4. Lab Vertex AI Model Training using Web Console and Gcloud CLI
  • 5. Introduction to Vertex AI Model Registry
  • 6. Lab Python SDK-Vertex AI Model Training,Model Registry and Model Deployment
  • 7. Lab Execute Online & Batch prediction Service using Python SDK and jupter nbks
  • 8. Lab-Walkthrough Batch Prediction Output & Online Prediction jobs using Cloud Run
  • 9. Lab-Deploy and implement Batch Prediction Job using GCP Cloud Functions
  • 10. Lab Overview of CICD using Vertex AI
  • 11. Lab Vertex AI CICD of Data science model using CloudBuild
  • 12. Assignment Deploy XGBoost Model to Vertex AI

  • 6. Vertex AI-Kubeflow Pipelines for ML Workflow Orchestration
  • 1. Introduction to Kubeflow for ML Orchestration
  • 2. Different Components in Kubeflow Pipelines
  • 3. Lab Deploy a simple pipeline for XgBoost Model
  • 4. Lab Trigger Xgboost Model using compiled json for continuous training
  • 5. Lab Execute end-to-end kubeflow pipeline with model evaluation
  • 6. Lab Assignment Deploy a Scikit-Learn Credit Scoring Model to Vertex Pipelines
  • 7. Introduction to Vertex AI Experiments
  • 8. Lab Use different model hyperparameters for Xgboost with Vertex AI Experiments
  • 9. LabTrain Different Data science Classification models using Experiments
  • 10. Assignment Perform Experiments for Bike share Regression Model

  • 7. Vertex AI-Hyperparameter Tuning Jobs, Explainability AI & Model Versioning
  • 1. Introduction to Hyperparameter Tuning on Vertex AI
  • 2. Lab Implement Hyperparameter Tuning for BikeShare Regression Model
  • 3. Lab Result Walkthrough & Assignment Overview
  • 4. Lab Result Walkthrough & Assignment Overview
  • 5. Lab Deploy Model Endpoint With Explainability Parameters
  • 6. Lab Execute explainability for online predictions and Interpret results
  • 7. Lab Execute explainability for online predictions and Interpret results
  • 8. Assignment Perform Explainability for XgBoost Models
  • 9. Introduction to Model Versioning using Vertex AI Model Registry
  • 10. Lab Deploy different versions of XgBoost Model to Model Registry
  • 11. Introduction to Vertex AI FeatureStore
  • 12. Lab Create Feature store objects
  • 13. Lab Ingest Data from Pandas DF into Feature Store
  • 14. Lab Read Data From Vertex AI Feature Store into Pandas Df
  • 15. Introduction to AutoML
  • 16. Lab-Train and Deploy Classification Model using AutoML
  • 17. Lab - Train and Deploy Regression Model using AutoML

  • 8. Generative AI on Google Cloud
  • 1.1 genai-section-source-code.zip
  • 1. Introduction to Generative AI
  • 2. Introduction to Large language models - PaLM 2
  • 3. Important keywords and concepts in LLM
  • 4. Lab-Generative AI Studio
  • 5. Lab - Execute LLM using Python & Jupyter Nbk
  • 6. Lab - Deploy text classification LLM Model using Python & Cloud Run
  • 7. Lab-Deploy Document Summarization Application using Python & Cloud Run
  • 8. Lab- Generate Fashion Image Descriptions using Python
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 20774
    حجم: 2428 مگابایت
    مدت زمان: 363 دقیقه
    تاریخ انتشار: ۱۵ مهر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید