وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning & Data Science with Python & Kaggle | A-Z

سرفصل های دوره

Data Science & Machine Learning A-Z & Kaggle with Heart Attack Prediction projects and Machine Learning Python projects


1. First Contact with Machine Learning
  • 1. What is Machine Learning
  • 2. Machine Learning Terminology
  • 3. Machine Learning Project Files.html
  • 4. FAQ regarding Python.html
  • 5. FAQ regarding Machine Learning.html

  • 2. Installations for Python
  • 1. Installing Anaconda Distribution for Windows
  • 2. Installing Anaconda Distribution for MacOs
  • 3. Installing Anaconda Distribution for Linux
  • 4. Overview of Jupyter Notebook and Google Colab

  • 3. Evaluation Metrics in Machine Learning
  • 1. Classification vs Regression in Machine Learning
  • 2. Machine Learning Model Performance Evaluation Classification Error Metrics
  • 3. Evaluating Performance Regression Error Metrics in Python
  • 4. Machine Learning With Python
  • 5. Quiz.html

  • 4. Supervised Learning with Machine Learning
  • 1. What is Supervised Learning in Machine Learning
  • 2. Quiz.html

  • 5. Linear Regression Algorithm in Machine Learning A-Z
  • 1. Linear Regression Algorithm Theory in Machine Learning A-Z
  • 2. Linear Regression Algorithm With Python Part 1
  • 3. Linear Regression Algorithm With Python Part 2
  • 4. Linear Regression Algorithm With Python Part 3
  • 5. Linear Regression Algorithm With Python Part 4

  • 6. Bias Variance Trade-Off in Machine Learning
  • 1. What is Bias Variance Trade-Off
  • 2. Quiz.html

  • 7. Logistic Regression Algorithm in Machine Learning A-Z
  • 1. What is Logistic Regression Algorithm in Machine Learning
  • 2. Logistic Regression Algorithm with Python Part 1
  • 3. Logistic Regression Algorithm with Python Part 2
  • 4. Logistic Regression Algorithm with Python Part 3
  • 5. Logistic Regression Algorithm with Python Part 4
  • 6. Logistic Regression Algorithm with Python Part 5
  • 7. Quiz.html

  • 8. K-fold Cross-Validation in Machine Learning A-Z
  • 1. K-Fold Cross-Validation Theory
  • 2. K-Fold Cross-Validation with Python

  • 9. K Nearest Neighbors Algorithm in Machine Learning A-Z
  • 1. K Nearest Neighbors Algorithm Theory
  • 2. K Nearest Neighbors Algorithm with Python Part 1
  • 3. K Nearest Neighbors Algorithm with Python Part 2
  • 4. K Nearest Neighbors Algorithm with Python Part 3
  • 5. Quiz.html

  • 10. Hyperparameter Optimization
  • 1. Hyperparameter Optimization Theory
  • 2. Hyperparameter Optimization with Python

  • 11. Decision Tree Algorithm in Machine Learning A-Z
  • 1. Decision Tree Algorithm Theory
  • 2. Decision Tree Algorithm with Python Part 1
  • 3. Decision Tree Algorithm with Python Part 2
  • 4. Decision Tree Algorithm with Python Part 3
  • 5. Decision Tree Algorithm with Python Part 4
  • 6. Decision Tree Algorithm with Python Part 5
  • 7. Quiz.html

  • 12. Random Forest Algorithm in Machine Learning A-Z
  • 1. Random Forest Algorithm Theory
  • 2. Random Forest Algorithm with Pyhon Part 1
  • 3. Random Forest Algorithm with Pyhon Part 2

  • 13. Support Vector Machine Algorithm in Machine Learning A-Z
  • 1. Support Vector Machine Algorithm Theory
  • 2. Support Vector Machine Algorithm with Python Part 1
  • 3. Support Vector Machine Algorithm with Python Part 2
  • 4. Support Vector Machine Algorithm with Python Part 3
  • 5. Support Vector Machine Algorithm with Python Part 4
  • 6. Quiz.html

  • 14. Unsupervised Learning with Machine Learning
  • 1. Unsupervised Learning Overview
  • 2. Quiz.html

  • 15. K Means Clustering Algorithm in Machine Learning A-Z
  • 1. K Means Clustering Algorithm Theory
  • 2. K Means Clustering Algorithm with Python Part 1
  • 3. K Means Clustering Algorithm with Python Part 2
  • 4. K Means Clustering Algorithm with Python Part 3
  • 5. K Means Clustering Algorithm with Python Part 4
  • 6. Quiz.html

  • 16. Hierarchical Clustering Algorithm in machine learning data science
  • 1. Hierarchical Clustering Algorithm Theory
  • 2. Hierarchical Clustering Algorithm with Python Part 1
  • 3. Hierarchical Clustering Algorithm with Python Part 2
  • 4. Quiz.html

  • 17. Principal Component Analysis (PCA) in Machine Learning A-Z
  • 1. Principal Component Analysis (PCA) Theory
  • 2. Principal Component Analysis (PCA) with Python Part 1
  • 3. Principal Component Analysis (PCA) with Python Part 2
  • 4. Principal Component Analysis (PCA) with Python Part 3

  • 18. Recommender System Algorithm in Machine Learning A-Z
  • 1. What is the Recommender System Part 1
  • 2. What is the Recommender System Part 2
  • 3. Quiz.html

  • 19. First Contact with Kaggle
  • 1. What is Kaggle
  • 2. FAQ about Kaggle.html
  • 3. Registering on Kaggle and Member Login Procedures
  • 4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html
  • 5. Getting to Know the Kaggle Homepage
  • 6. Quiz.html

  • 20. Competition Section on Kaggle
  • 1. Competitions on Kaggle Lesson 1
  • 2. Competitions on Kaggle Lesson 2
  • 3. Quiz.html

  • 21. Dataset Section on Kaggle
  • 1. Datasets on Kaggle
  • 2. Quiz.html

  • 22. Code Section on Kaggle
  • 1. Examining the Code Section in Kaggle Lesson 1
  • 2. Examining the Code Section in Kaggle Lesson 2
  • 3. Examining the Code Section in Kaggle Lesson 3
  • 4. Quiz.html

  • 23. Discussion Section on Kaggle
  • 1. What is Discussion on Kaggle
  • 2. Quiz.html

  • 24. Other Most Used Options on Kaggle
  • 1. Courses in Kaggle
  • 2. Ranking Among Users on Kaggle
  • 3. Blog and Documentation Sections
  • 4. Quiz.html

  • 25. Details on Kaggle
  • 1. User Page Review on Kaggle
  • 2. Treasure in The Kaggle
  • 3. Publishing Notebooks on Kaggle
  • 4. What Should Be Done to Achieve Success in Kaggle
  • 5. Quiz.html

  • 26. Introduction to Machine Learning with Real Hearth Attack Prediction Project
  • 1. First Step to the Project
  • 2. FAQ about Machine Learning, Data Science.html
  • 3. Notebook Design to be Used in the Project
  • 4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html
  • 5. Examining the Project Topic
  • 6. Recognizing Variables In Dataset
  • 7. Quiz.html

  • 27. First Organization
  • 1. Required Python Libraries
  • 2. Loading the Dataset
  • 3. Initial analysis on the dataset
  • 4. Quiz.html

  • 28. Preparation For Exploratory Data Analysis (EDA)
  • 1. Examining Missing Values
  • 2. Separating variables (Numeric or Categorical)
  • 3. Quiz.html

  • 29. Exploratory Data Analysis (EDA) - Uni-variate Analysis
  • 1. Numeric Variables (Analysis with Distplot) Lesson 1
  • 2. Numeric Variables (Analysis with Distplot) Lesson 2
  • 3. Categoric Variables (Analysis with Pie Chart) Lesson 1
  • 4. Categoric Variables (Analysis with Pie Chart) Lesson 2
  • 5. Examining the Missing Data According to the Analysis Result
  • 6. Quiz.html

  • 30. Exploratory Data Analysis (EDA) - Bi-variate Analysis
  • 1. Numeric Variables Target Variable (Analysis with FacetGrid) Lesson 1
  • 2. Numeric Variables Target Variable (Analysis with FacetGrid) Lesson 2
  • 3. Categoric Variables Target Variable (Analysis with Count Plot) Lesson 1
  • 4. Categoric Variables Target Variable (Analysis with Count Plot) Lesson 2
  • 5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1
  • 6. Examining Unique Values
  • 7. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2
  • 8. Examining Statistics of Variables
  • 9. Feature Scaling with the Robust Scaler Method
  • 10. Creating a New DataFrame with the Melt() Function
  • 11. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1
  • 12. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2
  • 13. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1
  • 14. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2
  • 15. Relationships between variables (Analysis with Heatmap) Lesson 1
  • 16. Relationships between variables (Analysis with Heatmap) Lesson 2
  • 17. Quiz.html

  • 31. Preparation for Modelling in Machine Learning
  • 1. Dropping Columns with Low Correlation
  • 2. Visualizing Outliers
  • 3. Dealing with Outliers Trtbps Variable Lesson 1
  • 4. Dealing with Outliers Trtbps Variable Lesson 2
  • 5. Dealing with Outliers Thalach Variable
  • 6. Dealing with Outliers Oldpeak Variable
  • 7. Determining Distributions of Numeric Variables
  • 8. Transformation Operations on Unsymmetrical Data
  • 9. Applying One Hot Encoding Method to Categorical Variables
  • 10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms
  • 11. Separating Data into Test and Training Set
  • 12. Quiz.html

  • 32. Modelling for machine learning
  • 1. Logistic Regression
  • 2. Cross Validation
  • 3. Roc Curve and Area Under Curve (AUC)
  • 4. Hyperparameter Optimization (with GridSearchCV)
  • 5. Decision Tree Algorithm
  • 6. Support Vector Machine Algorithm
  • 7. Random Forest Algorithm
  • 8. Hyperparameter Optimization (with GridSearchCV)
  • 9. Quiz.html

  • 33. Conclusion
  • 1. Project Conclusion and Sharing
  • 2. Quiz.html

  • 34. Extra
  • 1. Machine Learning And Data Science with Python And Kaggle A-Z.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 14094
    حجم: 6561 مگابایت
    مدت زمان: 1148 دقیقه
    تاریخ انتشار: ۲۹ خرداد ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید