وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning, Data Science and Generative AI with Python

سرفصل های دوره

Complete hands-on machine learning and GenAI tutorial with data science, Tensorflow, GPT, OpenAI, and neural networks


01 - Getting Started
  • 001 Introduction
  • 002 Udemy 101 Getting the Most From This Course
  • 003 Important note.html
  • 004 Installation Getting Started.html
  • 005 [Activity] WINDOWS Installing and Using Anaconda & Course Materials
  • 006 [Activity] MAC Installing and Using Anaconda & Course Materials
  • 007 [Activity] LINUX Installing and Using Anaconda & Course Materials
  • 008 Python Basics, Part 1 [Optional]
  • 009 [Activity] Python Basics, Part 2 [Optional]
  • 010 [Activity] Python Basics, Part 3 [Optional]
  • 011 [Activity] Python Basics, Part 4 [Optional]
  • 012 Introducing the Pandas Library [Optional]

  • 02 - Statistics and Probability Refresher, and Python Practice
  • 001 Types of Data (Numerical, Categorical, Ordinal)
  • 002 Mean, Median, Mode
  • 003 [Activity] Using mean, median, and mode in Python
  • 004 [Activity] Variation and Standard Deviation
  • 005 Probability Density Function; Probability Mass Function
  • 006 Common Data Distributions (Normal, Binomial, Poisson, etc)
  • 007 [Activity] Percentiles and Moments
  • 008 [Activity] A Crash Course in matplotlib
  • 009 [Activity] Advanced Visualization with Seaborn
  • 010 [Activity] Covariance and Correlation
  • 011 [Exercise] Conditional Probability
  • 012 Exercise Solution Conditional Probability of Purchase by Age
  • 013 Bayes Theorem

  • 03 - Predictive Models
  • 001 [Activity] Linear Regression
  • 002 [Activity] Polynomial Regression
  • 003 [Activity] Multiple Regression, and Predicting Car Prices
  • 004 Multi-Level Models

  • 04 - Machine Learning with Python
  • 001 Supervised vs. Unsupervised Learning, and TrainTest
  • 002 [Activity] Using TrainTest to Prevent Overfitting a Polynomial Regression
  • 003 Bayesian Methods Concepts
  • 004 [Activity] Implementing a Spam Classifier with Naive Bayes
  • 005 K-Means Clustering
  • 006 [Activity] Clustering people based on income and age
  • 007 Measuring Entropy
  • 008 [Activity] WINDOWS Installing Graphviz
  • 009 [Activity] MAC Installing Graphviz
  • 010 [Activity] LINUX Installing Graphviz
  • 011 Decision Trees Concepts
  • 012 [Activity] Decision Trees Predicting Hiring Decisions
  • 013 Ensemble Learning
  • 014 [Activity] XGBoost
  • 015 Support Vector Machines (SVM) Overview
  • 016 [Activity] Using SVM to cluster people using scikit-learn

  • 05 - Recommender Systems
  • 001 User-Based Collaborative Filtering
  • 002 Item-Based Collaborative Filtering
  • 003 [Activity] Finding Movie Similarities using Cosine Similarity
  • 004 [Activity] Improving the Results of Movie Similarities
  • 005 [Activity] Making Movie Recommendations with Item-Based Collaborative Filtering
  • 006 [Exercise] Improve the recommenders results

  • 06 - More Data Mining and Machine Learning Techniques
  • 001 K-Nearest-Neighbors Concepts
  • 002 [Activity] Using KNN to predict a rating for a movie
  • 003 Dimensionality Reduction; Principal Component Analysis (PCA)
  • 004 [Activity] PCA Example with the Iris data set
  • 005 Data Warehousing Overview ETL and ELT
  • 006 Reinforcement Learning
  • 007 [Activity] Reinforcement Learning & Q-Learning with Gym
  • 008 Understanding a Confusion Matrix
  • 009 Measuring Classifiers (Precision, Recall, F1, ROC, AUC)
  • external-links.txt

  • 07 - Dealing with Real-World Data
  • 001 BiasVariance Tradeoff
  • 002 [Activity] K-Fold Cross-Validation to avoid overfitting
  • 003 Data Cleaning and Normalization
  • 004 [Activity] Cleaning web log data
  • 005 Normalizing numerical data
  • 006 [Activity] Detecting outliers
  • 007 Feature Engineering and the Curse of Dimensionality
  • 008 Imputation Techniques for Missing Data
  • 009 Handling Unbalanced Data Oversampling, Undersampling, and SMOTE
  • 010 Binning, Transforming, Encoding, Scaling, and Shuffling

  • 08 - Apache Spark Machine Learning on Big Data
  • 001 Warning about Java 21+ and Spark 3!.html
  • 002 Spark installation notes for MacOS and Linux users.html
  • 003 [Activity] Installing Spark
  • 004 Spark Introduction
  • 005 Spark and the Resilient Distributed Dataset (RDD)
  • 006 Introducing MLLib
  • 007 Introduction to Decision Trees in Spark
  • 008 [Activity] K-Means Clustering in Spark
  • 009 TF IDF
  • 010 [Activity] Searching Wikipedia with Spark
  • 011 [Activity] Using the Spark DataFrame API for MLLib

  • 09 - Experimental Design ML in the Real World
  • 001 Deploying Models to Real-Time Systems
  • 002 AB Testing Concepts
  • 003 T-Tests and P-Values
  • 004 [Activity] Hands-on With T-Tests
  • 005 Determining How Long to Run an Experiment
  • 006 AB Test Gotchas

  • 10 - Deep Learning and Neural Networks
  • 001 Deep Learning Pre-Requisites
  • 002 The History of Artificial Neural Networks
  • 003 [Activity] Deep Learning in the Tensorflow Playground
  • 004 Deep Learning Details
  • 005 Introducing Tensorflow
  • 006 [Activity] Using Tensorflow, Part 1
  • 007 [Activity] Using Tensorflow, Part 2
  • 008 [Activity] Introducing Keras
  • 009 [Activity] Using Keras to Predict Political Affiliations
  • 010 Convolutional Neural Networks (CNNs)
  • 011 [Activity] Using CNNs for handwriting recognition
  • 012 Recurrent Neural Networks (RNNs)
  • 013 [Activity] Using a RNN for sentiment analysis
  • 014 [Activity] Transfer Learning
  • 015 Tuning Neural Networks Learning Rate and Batch Size Hyperparameters
  • 016 Deep Learning Regularization with Dropout and Early Stopping
  • 017 The Ethics of Deep Learning

  • 11 - Generative Models
  • 001 Variational Auto-Encoders (VAEs) - how they work
  • 002 Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST
  • 002 variationalautoencoders.zip
  • 003 Generative Adversarial Networks (GANs) - How they work
  • 004 Generative Adversarial Networks (GANs) - Playing with some demos
  • 005 Generative Adversarial Networks (GANs) - Hands-on with Fashion MNIST
  • 005 gan-on-fashion-mnist.zip
  • 006 Learning More about Deep Learning

  • 12 - Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks
  • 001 The Transformer Architecture (encoders, decoders, and self-attention.)
  • 002 Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth
  • 003 Applications of Transformers (GPT)
  • 004 How GPT Works, Part 1 The GPT Transformer Architecture
  • 005 How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding
  • 006 Fine Tuning Transfer Learning with Transformers
  • 007 transformers-mlcourse.zip
  • 007 [Activity] Tokenization with Google CoLab and HuggingFace
  • 008 [Activity] Positional Encoding
  • 009 [Activity] Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT
  • 010 [Activity] Using small and large GPT models within Google CoLab and HuggingFace
  • 011 [Activity] Fine Tuning GPT with the IMDb dataset
  • 012 From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients
  • 013 From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation

  • 13 - The OpenAI API (Developing with GPT and ChatGPT)
  • 001 chat-completions.zip
  • 001 [Activity] The OpenAI Chat Completions API
  • 002 functions.zip
  • 002 [Activity] Using Tools and Functions in the OpenAI Chat Completion API
  • 003 image.zip
  • 003 [Activity] The Images (DALL-E) API in OpenAI
  • 004 embedding.zip
  • 004 [Activity] The Embeddings API in OpenAI Finding similarities between words
  • 005 The Legacy Fine-Tuning API for GPT Models in OpenAI
  • 006 extract-script.zip
  • 006 [Demo] Fine-Tuning OpenAIs Davinci Model to simulate Data from Star Trek
  • 007 The New OpenAI Fine-Tuning API; Fine-Tuning GPT-3.5 to simulate Commander Data!
  • 007 makingdata.zip
  • 008 moderation.zip
  • 008 [Activity] The OpenAI Moderation API
  • 009 audio.zip
  • 009 [Activity] The OpenAI Audio API (speech to text)

  • 14 - Retrieval Augmented Generation (RAG)
  • 001 Retrieval Augmented Generation (RAG) How it works, with some examples
  • 002 Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek
  • 002 data-rag.zip

  • 15 - Final Project
  • 001 Your final project assignment Mammogram Classification
  • 002 Final project review

  • 16 - You made it!
  • 001 More to Explore
  • 002 Dont Forget to Leave a Rating!.html
  • 003 Bonus Lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38990
    حجم: 7379 مگابایت
    مدت زمان: 1126 دقیقه
    تاریخ انتشار: ۳۰ تیر ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید