وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning and AI Foundations: Clustering and Association

سرفصل های دوره

Unsupervised learning is a type of machine learning where algorithms parse unlabeled data. The focus is not on sorting data into known categories but uncovering hidden patterns. Unsupervised learning plays a big role in modern marketing segmentation, fraud detection, and market basket analysis. This course shows how to use leading machine-learning techniques—cluster analysis, anomaly detection, and association rules—to get accurate, meaningful results from big data.

Instructor Keith McCormick reviews the most common clustering algorithms: hierarchical, k-means, BIRCH, and self-organizing maps (SOM). He uses the same algorithms for anomaly detection, with additional specialized functions available in IBM SPSS Modeler. He closes the course with a review of association rules and sequence detection, and also provides some resources for learning more.

All exercises are demonstrated in IBM SPSS Modeler and IBM SPSS Statistics, but the emphasis is on concepts, not the mechanics of the software.


01 - Introduction
  • 01 - Welcome
  • 02 - What you should know
  • 03 - Using the exercise files
  • 04 - What is unsupervised machine learning

  • 02 - 1. What Is Cluster Analysis
  • 01 - Looking at the data with a 2D scatter plot
  • 02 - Understanding hierarchical cluster analysis
  • 03 - Running hierarchical cluster analysis
  • 04 - Interpreting a dendrogram
  • 05 - Methods for measuring distance
  • 06 - What is k-nearest neighbors

  • 03 - 2. K-Means
  • 01 - How does k-means work
  • 02 - Which variables should be used with k-means
  • 03 - Interpreting a box plot
  • 04 - Running a k-means cluster analysis
  • 05 - Interpreting cluster analysis output
  • 06 - What does silhouette mean
  • 07 - Which cases should be used with k-means
  • 08 - Finding optimum value for k k = 3
  • 09 - Finding optimum value for k k = 4
  • 10 - Finding optimum value for k k = 5
  • 11 - What the best solution

  • 04 - 3. Visualizing and Reporting Cluster Solutions
  • 01 - Summarizing cluster means in a table
  • 02 - Traffic Light feature in Excel
  • 03 - Line graphs

  • 05 - 4. Cluster Methods for Categorical Variables
  • 01 - Relating clusters to categories statistically
  • 02 - Relating clusters to categories visually
  • 03 - Running a multiple correspondence analysis
  • 04 - Interpreting a perceptual map
  • 05 - Using cluster analysis and decision trees together
  • 06 - A BIRCHtwo-step example
  • 07 - A self organizing map example

  • 06 - 5. Anomaly Detection
  • 01 - The k = 1 trick
  • 02 - Anomaly detection algorithms
  • 03 - Using SOM for anomaly detection

  • 07 - 6. Association Rules and Sequence Detection
  • 01 - Intro to association rules and sequence analysis
  • 02 - Running association rules
  • 03 - Some association rules terminology
  • 04 - Interpreting association rules
  • 05 - Putting association rules to use
  • 06 - Comparing clustering and association rules
  • 07 - Sequence detection

  • 08 - Conclusion
  • 01 - Next steps
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 9664
    حجم: 532 مگابایت
    مدت زمان: 203 دقیقه
    تاریخ انتشار: ۲۶ فروردین ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید