در حال حاضر محصولی در سبد خرید شما وجود ندارد.
As large language models grow in popularity, the infrastructure to be used around them also becomes vital to reduce costs, generate accurate responses, and improve efficiency. Vector databases play a vital role in several LLM use cases to help alleviate LLM shortcomings, reduce costs and latency. Knowledge of its basics and applications are vital for any engineer building applications with LLMs, and in this course, Kumaran Ponnambalam teaches you the basics of vector databases and how to use them in LLM caching and retrieval-augmented generation (RAG).
Kumaran begins with a discussion on the basics of vector databases and their applications. He then explores specialized databases for storing vectors and uses the Milvus database as the reference example, and demonstrates read and write operations with the Milvus database. Learn how to use vector databases for LLM caching, with an example use case, along with examples of RAG use cases. Finally, Kumaran concludes with a discussion on optimizing vector databases.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
MLOps Essentials: Monitoring Model Drift and Bias
Applied AI: Building NLP Apps with Hugging Face Transformers
Agentic AI for Developers: Concepts and Application for Enterprises
آموزش ساخت برنامه های قابل توسعه و بزرگ شدن بوسیله آپاچی کافکا
Edge AI: Tools and Best Practices for Building AI Applications at the Edge
شبکه های عصبی مکرر
MLOps Essentials: Model Deployment and Monitoring
تجزیه و تحلیل متن و پیش بینی بوسیله کدنویسی در زبان Python
آموزش مهندسی داده دسته ای با Apache Flink
Data Science on Google Cloud Platform: Designing Data Warehouses