وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Learning Apache Spark | Master Spark for Big Data Processing

سرفصل های دوره

Embark on a comprehensive journey to Master Apache Spark from Data Manipulation to Machine Learning!


1 - Getting Started
  • 1 -Why Should You Learn Apache Spark
  • 2 -What Does This Course Offer on Apache Spark

  • 2 - All about Apache Spark
  • 1 -Lets understand WordCount
  • 2 -Lets understand Map and Reduce
  • 3 -Programming with Map and Reduce
  • 3 -section02 03 map reduce.zip
  • 4 -Lets understand Hadoop
  • 5 -Apache Hadoop Architecture
  • 6 -Apache Hadoop and Apache Spark
  • 7 -Apache Spark Architecture
  • 8 -What is PySpark

  • 3 - Installations for Apache Spark
  • 1 -Install JAVA JDK
  • 1 -Section03 - 00 - Resources.zip
  • 2 -Install Python
  • 3 -Install JupyterLab
  • 4 -Install PySpark
  • 5 -Spark Session by Initialization
  • 6 -Running PySpark on AWS EC2 Instances P1
  • 7 -Running PySpark on AWS EC2 Instance P2

  • 4 - Using Databricks Community Edition
  • 1 -Why Use Databricks Community Edition
  • 2 -Register for Databricks Community Edition
  • 3 -When to use Databricks Community Edition
  • 4 -Running Magic Commands in Databricks P1
  • 5 -Running Magic Commands in Databricks P2

  • 5 - Spark DataFrames
  • 1 -Apache Spark DataFrame
  • 2 -Create DataFrames from CSV Files P1
  • 2 -data.zip
  • 2 -section05 03 create dataframes using csv files.zip
  • 3 -Create DataFrames from CSV Files P2
  • 4 -Create DataFrames from Parquet Files
  • 4 -section05 05 create dataframes using parquet files.zip

  • 6 - Spark Data Transformations
  • 1 -Using SELECT
  • 1 -data.zip
  • 1 -section06 01 using select.zip
  • 2 -Using FILTER
  • 2 -section06 02 using filter.zip
  • 3 -Using ORDER BY
  • 3 -section06 03 using order by.zip
  • 4 -Using GROUP BY
  • 4 -section06 04 using group by.zip
  • 5 -Using AGGREGATE Functions
  • 5 -section06 05 using aggregate functions.zip
  • 6 -Using INNER JOIN
  • 6 -section06 06 using inner joins.zip

  • 7 - Spark SQL Catalog
  • 1 -Spark SQL Catalogs
  • 2 -Access Spark SQL Catalogs
  • 2 -data.zip
  • 2 -section07 02 access spark sql catalogs.zip
  • 3 -List Databases from Catalogs
  • 3 -section07 03 list databases from catalogs.zip
  • 4 -List Tables from Current Database
  • 4 -section07 04 list tables from current databases.zip
  • 5 -Create Spark Temp View
  • 5 -section07 05 create spark temp view.zip
  • 6 -Run SQL Queries on Temp Views
  • 6 -section07 06 run sql queries.zip
  • 7 -Drop Temp Views
  • 7 -section07 07 drop temp views.zip

  • 8 - Databricks Utility FileSystem for Apache Spark
  • 1 -Using Databricks Utilities
  • 1 -data.zip
  • 1 -section08 01 databricks file system for apache spark.zip
  • 2 -Using dbfs - Databricks Utility FileSystem
  • 3 -Using dbfs - Make Directory
  • 4 -Using dbfs - Copy Files
  • 5 -Using dbfs - Delete Files

  • 9 - Pandas API on Spark
  • 1 -Introduction to Pandas
  • 2 -Pandas API on Spark
  • 3 -Reading and Writing Data with Pandas P1
  • 3 -data.zip
  • 3 -section09 03 reading and writing data with pandas.zip
  • 4 -Reading and Writing Data with Pandas P2
  • 5 -Data Manipulation with PySpark Pandas
  • 5 -section09 05 data manipulation with pyspark pandas.zip
  • 6 -Merging and Joining in PySpark Pandas
  • 6 -section09 06 merging and joining dataframes with pyspark pandas.zip
  • 7 -Grouping and Aggregation with PySpark Pandas
  • 7 -section09 07 grouping and aggregation with pyspark pandas.zip
  • 8 -Visualizing Data in PySpark Pandas
  • 8 -section09 08 visualizing with pyspark pandas.zip

  • 10 - Structured Streaming Using Apache Spark
  • 1 -What is Apache Spark Structure Streaming
  • 2 -How Apache Spark handles Structured Streaming
  • 3 -Handling Programmatically Streaming Data
  • 4 -Programmatic Modes by Apache Spark
  • 5 -DataFrames for Streaming
  • 6 -Section10 - 00 - Resources.zip
  • 6 -readStream API
  • 7 -writeStream API
  • 8 -Querying Data
  • 9 -StreamingQuery - stop
  • 10 -Structured Streaming with Kafka and Spark P1
  • 11 -Structured Streaming with Kafka and Spark P2
  • 12 -Structured Streaming with Kafka and Spark P3
  • 13 -Terminate the Kafka Environment
  • 14 -Handling Late Data Arrivals and Water Marking P1
  • 15 -Handling Late Data Arrivals and Water Marking P2

  • 11 - Machine Learning with Spark
  • 1 -About this section
  • 2 -Learning about Machine Learning
  • 3 -How to build a Machine Learning Model
  • 4 -Apache Spark MLLib Overview
  • 5 -Learning about ML Pipelines using Spark MLlib
  • 6 -Data Sources by Spark MLlib to Build ML Models
  • 7 -Create DataFrames from Data Sources
  • 7 -Section10 - 00 - Resources.zip
  • 8 -Learning about Featurization using Spark MLlib
  • 9 -Using Apache Spark MLlibs - Feature Transformers
  • 10 -Using Tokenizer
  • 11 -Using StringIndexer
  • 12 -Using Pipelines
  • 13 -Using VectorAssembler
  • 14 -Using VectorIndexer
  • 15 -Using MLlib Estimator - Linear Regression
  • 16 -Using MLlib Estimator - Logisitic Regression
  • 17 -Measure ML Effiecny using Spark MLlib Evaluators
  • 18 -Using ML for Solving Real World Problem
  • 19 -Building ML Model P1 - Using Local Host
  • 20 -Building ML Model P2 - Using Databricks Community Edition
  • 21 -Using Apache Spark MLFlow with Databricks Community Edition
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 44401
    حجم: 2840 مگابایت
    مدت زمان: 432 دقیقه
    تاریخ انتشار: ۲۰ اردیبهشت ۱۴۰۴
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید