وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Learning Apache Spark | Master Spark for Big Data Processing

سرفصل های دوره

Embark on a comprehensive journey to Master Apache Spark from Data Manipulation to Machine Learning!


1 - Getting Started
  • 1 -Why Should You Learn Apache Spark
  • 2 -What Does This Course Offer on Apache Spark

  • 2 - All about Apache Spark
  • 1 -Lets understand WordCount
  • 2 -Lets understand Map and Reduce
  • 3 -Programming with Map and Reduce
  • 3 -section02 03 map reduce.zip
  • 4 -Lets understand Hadoop
  • 5 -Apache Hadoop Architecture
  • 6 -Apache Hadoop and Apache Spark
  • 7 -Apache Spark Architecture
  • 8 -What is PySpark

  • 3 - Installations for Apache Spark
  • 1 -Install JAVA JDK
  • 1 -Section03 - 00 - Resources.zip
  • 2 -Install Python
  • 3 -Install JupyterLab
  • 4 -Install PySpark
  • 5 -Spark Session by Initialization
  • 6 -Running PySpark on AWS EC2 Instances P1
  • 7 -Running PySpark on AWS EC2 Instance P2

  • 4 - Using Databricks Community Edition
  • 1 -Why Use Databricks Community Edition
  • 2 -Register for Databricks Community Edition
  • 3 -When to use Databricks Community Edition
  • 4 -Running Magic Commands in Databricks P1
  • 5 -Running Magic Commands in Databricks P2

  • 5 - Spark DataFrames
  • 1 -Apache Spark DataFrame
  • 2 -Create DataFrames from CSV Files P1
  • 2 -data.zip
  • 2 -section05 03 create dataframes using csv files.zip
  • 3 -Create DataFrames from CSV Files P2
  • 4 -Create DataFrames from Parquet Files
  • 4 -section05 05 create dataframes using parquet files.zip

  • 6 - Spark Data Transformations
  • 1 -Using SELECT
  • 1 -data.zip
  • 1 -section06 01 using select.zip
  • 2 -Using FILTER
  • 2 -section06 02 using filter.zip
  • 3 -Using ORDER BY
  • 3 -section06 03 using order by.zip
  • 4 -Using GROUP BY
  • 4 -section06 04 using group by.zip
  • 5 -Using AGGREGATE Functions
  • 5 -section06 05 using aggregate functions.zip
  • 6 -Using INNER JOIN
  • 6 -section06 06 using inner joins.zip

  • 7 - Spark SQL Catalog
  • 1 -Spark SQL Catalogs
  • 2 -Access Spark SQL Catalogs
  • 2 -data.zip
  • 2 -section07 02 access spark sql catalogs.zip
  • 3 -List Databases from Catalogs
  • 3 -section07 03 list databases from catalogs.zip
  • 4 -List Tables from Current Database
  • 4 -section07 04 list tables from current databases.zip
  • 5 -Create Spark Temp View
  • 5 -section07 05 create spark temp view.zip
  • 6 -Run SQL Queries on Temp Views
  • 6 -section07 06 run sql queries.zip
  • 7 -Drop Temp Views
  • 7 -section07 07 drop temp views.zip

  • 8 - Databricks Utility FileSystem for Apache Spark
  • 1 -Using Databricks Utilities
  • 1 -data.zip
  • 1 -section08 01 databricks file system for apache spark.zip
  • 2 -Using dbfs - Databricks Utility FileSystem
  • 3 -Using dbfs - Make Directory
  • 4 -Using dbfs - Copy Files
  • 5 -Using dbfs - Delete Files

  • 9 - Pandas API on Spark
  • 1 -Introduction to Pandas
  • 2 -Pandas API on Spark
  • 3 -Reading and Writing Data with Pandas P1
  • 3 -data.zip
  • 3 -section09 03 reading and writing data with pandas.zip
  • 4 -Reading and Writing Data with Pandas P2
  • 5 -Data Manipulation with PySpark Pandas
  • 5 -section09 05 data manipulation with pyspark pandas.zip
  • 6 -Merging and Joining in PySpark Pandas
  • 6 -section09 06 merging and joining dataframes with pyspark pandas.zip
  • 7 -Grouping and Aggregation with PySpark Pandas
  • 7 -section09 07 grouping and aggregation with pyspark pandas.zip
  • 8 -Visualizing Data in PySpark Pandas
  • 8 -section09 08 visualizing with pyspark pandas.zip

  • 10 - Structured Streaming Using Apache Spark
  • 1 -What is Apache Spark Structure Streaming
  • 2 -How Apache Spark handles Structured Streaming
  • 3 -Handling Programmatically Streaming Data
  • 4 -Programmatic Modes by Apache Spark
  • 5 -DataFrames for Streaming
  • 6 -Section10 - 00 - Resources.zip
  • 6 -readStream API
  • 7 -writeStream API
  • 8 -Querying Data
  • 9 -StreamingQuery - stop
  • 10 -Structured Streaming with Kafka and Spark P1
  • 11 -Structured Streaming with Kafka and Spark P2
  • 12 -Structured Streaming with Kafka and Spark P3
  • 13 -Terminate the Kafka Environment
  • 14 -Handling Late Data Arrivals and Water Marking P1
  • 15 -Handling Late Data Arrivals and Water Marking P2

  • 11 - Machine Learning with Spark
  • 1 -About this section
  • 2 -Learning about Machine Learning
  • 3 -How to build a Machine Learning Model
  • 4 -Apache Spark MLLib Overview
  • 5 -Learning about ML Pipelines using Spark MLlib
  • 6 -Data Sources by Spark MLlib to Build ML Models
  • 7 -Create DataFrames from Data Sources
  • 7 -Section10 - 00 - Resources.zip
  • 8 -Learning about Featurization using Spark MLlib
  • 9 -Using Apache Spark MLlibs - Feature Transformers
  • 10 -Using Tokenizer
  • 11 -Using StringIndexer
  • 12 -Using Pipelines
  • 13 -Using VectorAssembler
  • 14 -Using VectorIndexer
  • 15 -Using MLlib Estimator - Linear Regression
  • 16 -Using MLlib Estimator - Logisitic Regression
  • 17 -Measure ML Effiecny using Spark MLlib Evaluators
  • 18 -Using ML for Solving Real World Problem
  • 19 -Building ML Model P1 - Using Local Host
  • 20 -Building ML Model P2 - Using Databricks Community Edition
  • 21 -Using Apache Spark MLFlow with Databricks Community Edition
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 44401
    حجم: 2840 مگابایت
    مدت زمان: 432 دقیقه
    تاریخ انتشار: ۲۰ اردیبهشت ۱۴۰۴
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید