وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Learn Machine Learning & Data Mining with Python

سرفصل های دوره

Learn Building Machine Learning & Deep Learning Models in Python, and use the Results in Data Mining Analyses


1. Introduction to Data Mining & Machine Learning in Python (Course 1)
  • 1. Introduction to Data Mining & Machine Learning in Python (Course 1)
  • 2. Course Contents
  • 3. Control a pace of a video
  • 4. Introduction to Data Mining
  • 5. Data Mining Definition.html
  • 6. Business Applications of Data Mining
  • 7. Data Mining Process Pyramid
  • 8. Introduction to Machine Learning
  • 9. Machine Leaning Sub-fields..html
  • 10. How Does Machine Learning Work
  • 11. Train and Test Sets..html
  • 12. Machine Learning Algorithms Types
  • 13. Machine Leaning Types.html
  • 14. Reinforcement Learning overview
  • 15. Course Rating.html

  • 2. Setup Programming Environment
  • 1. Install Anaconda package
  • 2. Introduction to Jupyter
  • 3.1 1_create (lists, tuples, and dictionaries).zip
  • 3. Introduction to Python Part-1(Create Lists)
  • 4. Introduction to Python Part-2 (Create Tuples & Dictionaries)
  • 5.1 2_loops in python.zip
  • 5. Introduction to Python Part-3 (Loops & Functions)
  • 6.1 3_import libraries.zip
  • 6.2 Sales_data.csv
  • 6. Introduction to Pandas Library
  • 7. Introduction to NumPy & Matplotlib Libraries
  • 8. Introduction to Scikit-learn Library

  • 3. Supervised Learning Algorithms
  • 1. Introduction to Supervised Learning Algorithms
  • 2. Types of Variables
  • 3. Data Types.html
  • 4. Introduction to Regression Analysis
  • 5. Regression Model.html
  • 6. Regression Model Slope
  • 7. Regression Slope.html
  • 8. The Intercept Value
  • 9. The Intercept Value.html
  • 10. R-Squared Value
  • 11. P-Value
  • 12. Simple Linear Regression
  • 13. Concepts used in Machine Learning (Important).html
  • 14.1 Study_Hours.csv
  • 14. Overview on the dataset
  • 15.1 simple linear regression.zip
  • 15. Create Simple Linear Regression Model in Python-Part 1
  • 16. Create Simple Linear Regression Model in Python-Part 2
  • 17. Create Simple Linear Regression Model in Python-Part 3
  • 18. Create Simple Linear Regression Model in Python-Part 4
  • 19. Create Simple Linear Regression Model in Python-Part 5
  • 20. Multiple Linear Regression
  • 21. Dummy Variables
  • 22. Dummy Variables Trap.html
  • 23. Stepwise Approach
  • 24. Assumptions of Multiple Linear Regression
  • 25.1 Companies spends and profits.csv
  • 25. Overview on the business problem data
  • 26.1 multiple linear regression.zip
  • 26. Create Multiple Linear Regression Model in Python-Part 1
  • 27. Create Multiple Linear Regression Model in Python-Part 2
  • 28. Create Multiple Linear Regression Model in Python-Part 3
  • 29. Create Multiple Linear Regression Model in Python-Part 4
  • 30. Polynomial Regression
  • 31.1 Reward_system.csv
  • 31. Overview on the business problem data
  • 32.1 polynomial regression model.zip
  • 32. Create Polynomial Regression Model in Python-Part 1
  • 33. Create Polynomial Regression Model in Python-Part 2
  • 34. Create Polynomial Regression Model in Python-Part 3
  • 35. Course Rating.html
  • 36. Introduction to Classification
  • 37. Introduction to Logistic Regression
  • 38. Confusion Matrix
  • 39. Standard Scaler
  • 40.1 Bank_Data.csv
  • 40. Overview on the business problem data
  • 41.1 logistic regression model.zip
  • 41. Create Logistic Regression Model in Python-Part 1
  • 42. Create Logistic Regression Model in Python-Part 2
  • 43. KNN Classification Algorithm
  • 44.1 Bank_Data.csv
  • 44.2 knn model.zip
  • 44. Create KNN Model in Python
  • 45. Support Vector Machine (SVM) Classification Algorithm
  • 46.1 support vector machine.zip
  • 46. Create Support Vector Machine in Python
  • 47. Naive Bayes Algorithm Part 1
  • 48. Naive Bayes Algorithm Part 2
  • 49.1 naive bayes model.zip
  • 49. Create Naive Bayes Model in Python
  • 50. Decision Tree Algorithm
  • 51.1 Bank_Data.csv
  • 51.2 decision tree model .zip
  • 51. Create Decision Tree Model in Python
  • 52. Random Forest Algorithm
  • 53.1 random forest model.zip
  • 53. Create Random Forest Model in Python
  • 54. Course Rating.html

  • 4. Unsupervised Learning Algorithms
  • 1. Review Unsupervised Learning Algorithms
  • 2. Hierarchical Clustering Algorithm
  • 3. Dendrogram Diagram Method
  • 4.1 Movies.csv
  • 4. Overview on the business problem data
  • 5.1 hc clustering.zip
  • 5. Create Hierarchical Clustering Algorithm in Python-1
  • 6. Create Hierarchical Clustering Algorithm in Python-2
  • 7. K-means Clustering Algorithm
  • 8. Using Elbow Method to Determine Optimal Number of Clusters
  • 9.1 k-means clustering model.zip
  • 9. Create K-means Clustering Algorithm Model in Python - 1
  • 10. Create K-means Clustering Algorithm Model in Python - 2
  • 11. Association Rules (Market Basket Analysis)
  • 12.1 GroceryStoreDataSet.csv
  • 12. Overview on the business problem data
  • 13.1 apriori model.zip
  • 13. Create Association Rules (Market Basket Analysis) Model in Python - 1
  • 14. Create Association Rules (Market Basket Analysis) Model in Python - 2
  • 15. Create Association Rules (Market Basket Analysis) Model in Python - 3

  • 5. Deep Learning
  • 1. Introduction to Deep Learning
  • 2. Use Deep Learning in Classification
  • 3. How Does Deep Learning Work
  • 4. Activation Functions
  • 5. What is Tensorflow
  • 6. Introduction to the Deep Learning Problem and Dataset
  • 7.1 deep learning model.zip
  • 7.2 Medical_data.csv
  • 7. Create Artificial Neural Network Model in Python Part-1
  • 8. Create Artificial Neural Network Model in Python Part-2
  • 9.1 Link to the Keras documentation website..html
  • 9. Create Artificial Neural Network Model in Python Part-3
  • 10. Course Rating.html

  • 6. Appendix Statistics Overview
  • 1. What is Statistics
  • 2. Sample And Population
  • 3. Descriptive and Inferential Statistics
  • 4. Data types
  • 5.1 Walmart+Stores.xlsx
  • 5. Visualize Data
  • 6.1 Histogram.xlsx
  • 6. Histogram
  • 7. Central Tendency Measures
  • 8. Variability Measures
  • 9.1 Variance+and+SD.xlsx
  • 9. Calculate Central and Variability Measures (Practical)
  • 10. Symmetry and skewness in data
  • 11. Correlation and Covariance
  • 12. Introduction to Inferential Statistics
  • 13. Discrete Probability Distributions
  • 14. Normal Distribution
  • 15. Variable standardization
  • 16. Variable standardization Demo
  • 17. Introduction to Central Limit Theorem
  • 18. Estimators
  • 19. Introduction to Confidence Interval
  • 20. Calculate Confidence Interval for one Sample with a Known Population Variance
  • 21. Introduction to the Business Problem
  • 22.1 1_Confidence intervals variance known.xlsx
  • 22. Calculate Confidence Interval in Excel
  • 23. t - Distribution
  • 24.1 2_Confidence intervals variance unknown.xlsx
  • 24. Calculate Confidence Interval for one Sample with a Unknown Population Variance
  • 25. Reduce Margin of Error
  • 26. Confidence Interval for two Dependent Samples
  • 27. Calculate Confidence Interval for two Dependent Samples in Excel
  • 28.1 3_Confidence intervals dependent samples.xlsx
  • 28. Confidence Interval for two Independent Samples with a Known Population Variance
  • 29. Calculate Confidence Interval for two Independent Samples Known Var in Excel
  • 30.1 5_Confidence intervals independent samples variance unknown and equal.xlsx
  • 30. Confidence Interval for two Independent Samples Unknown Population Variance
  • 31. What is a Statistical Hypothesis
  • 32. Types of Hypotheses
  • 33. P-Value
  • 34. Link to z-value Calculator.html
  • 35. Testing a Hypothesis for one Sample, Variance is Known
  • 36.1 6_Test Hypothises population variance known.xlsx
  • 36. Testing the Hypothesis in Excel
  • 37.1 7_Test hypothises population variance unknown.xlsx
  • 37. Testing a Hypothesis for one Sample, Variance is Unknown
  • 38.1 8_Test hypothises dependent samples.xlsx
  • 38. Testing a Hypothesis for two Dependent Samples
  • 39. Link to t-value Calculator.html
  • 40.1 9_Test hypothises two independent samples variance known.xlsx
  • 40. Testing a Hypothesis for two Independent Samples, Variance is Known
  • 41.1 10_Test hypothises two independent samples variance unknown.xlsx
  • 41. Testing a Hypothesis for two Independent Samples, Variance is Unknown
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 194
    حجم: 3275 مگابایت
    مدت زمان: 516 دقیقه
    تاریخ انتشار: ۲۲ دی ۱۴۰۱
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید