وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Introduction to Machine Learning with KNIME

سرفصل های دوره

KNIME is an open-source workbench-style tool for predictive analytics and machine learning. It is highly compatible with numerous data science technologies, including R, Python, Scala, and Spark. With KNIME, you can produce solutions that are virtually self-documenting and ready for use. These reasons and more make KNIME one of the most popular and fastest-growing analytics platforms around. In this course, expert Keith McCormick shows how KNIME supports all the phases of the Cross Industry Standard Process for Data Mining (CRISP-DM) in one platform. Get up and running quickly—in 15 minutes or less—or stick around for the more in-depth training covering merging and aggregation, modeling, and data scoring. Plus, learn how to increase the power of KNIME with extensions and integrate R and Python.


01 - Introduction
  • 01 - Open-source machine learning with KNIME
  • 02 - Who is this course for

  • 02 - 1. How Does KNIME Complement Your Existing Analytics Toolkit
  • 01 - Why use an Analytics Workbench
  • 02 - Using CRISP-DM to evaluate tools
  • 03 - Why choose KNIME

  • 03 - 2. Getting Comfortable with KNIME
  • 01 - The KNIME interface
  • 02 - Find case studies on the Examples Server
  • 03 - The KNIME Hub
  • 04 - Add thousands of nodes with Extensions
  • 05 - Search and Help

  • 04 - 3. Accessing Data
  • 01 - Accessing data
  • 02 - File reader node
  • 03 - Database access with KNIME

  • 05 - 4. Data Understanding
  • 01 - Describe data and verify data quality
  • 02 - Explore data Scatterplot
  • 03 - Explore data Boxplot

  • 06 - 5. Data Integration and Merging
  • 01 - Merging with the Joiner node
  • 02 - Aggregating with the GroupBy node
  • 03 - Creating new variables with Construct
  • 04 - Select data with Column Filter
  • 05 - Balancing data with Row Sampling node
  • 06 - Clean data with the Missing Value node
  • 07 - Format with Cell Splitter

  • 07 - 6. Modeling
  • 01 - KNIME modeling options
  • 02 - Regression example
  • 03 - Decision tree
  • 04 - Decision tree Scoring new data
  • 05 - Components in KNIME AutoML and XAI

  • 08 - 7. A World of Possibilities
  • 01 - PMML
  • 02 - R and GGPLOT2
  • 03 - Python options in KNIME
  • 04 - Certification in KNIME

  • 09 - Conclusion
  • 01 - Next steps
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 18531
    حجم: 329 مگابایت
    مدت زمان: 120 دقیقه
    تاریخ انتشار: ۱۴ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید