وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

How to Think About Machine Learning Algorithms

سرفصل های دوره

If you don't know the question, you probably won't get the answer right. This course is all about asking the right machine learning questions, modeling real-world situations as one of several well understood machine learning problems.


1. Course Overview
  • 1. Course Overview

  • 2. Introducing Machine Learning
  • 1. Recognizing Machine Learning Applications
  • 2. Knowing When to Use Machine Learning
  • 3. Understanding the Machine Learning Process
  • 4. Identifying the Type of a Machine Learning Problem

  • 3. Classifying Data into Predefined Categories
  • 1. Understanding the Setup of a Classification Problem
  • 2. Detecting the Gender of a User
  • 3. Classifying Text on the Basis of Sentiment
  • 4. Deciding a Trading Strategy
  • 5. Detecting Ads
  • 6. Understanding Customer Behavior

  • 4. Solving Classification Problems
  • 1. Using the Naive Bayes Algorithm for Sentiment Analysis
  • 2. Understanding When to use Naive Bayes
  • 3. Implementing Naive Bayes
  • 4. Detecting Ads Using Support Vector Machines
  • 5. Implementing Support Vector Machines

  • 5. Predicting Relationships between Variables with Regression
  • 1. Understanding the Regression Setup
  • 2. Forecasting Demand
  • 3. Predicting Stock Returns
  • 4. Detecting Facial Features
  • 5. Contrasting Classification and Regression

  • 6. Solving Regression Problems
  • 1. Introducing Linear Regression
  • 2. Applying Linear Regression to Quant Trading
  • 3. Minimizing Error Using Stochastic Gradient Descent
  • 4. Finding the Beta for Google
  • 5. Implementing Linear Regression in Python

  • 7. Recommending Relevant Products to a User
  • 1. Appreciating the Role of Recommendations
  • 2. Predicting Ratings Using Collaborative Filtering
  • 3. Finding Hidden Factors that Influence Ratings
  • 4. Understanding the Alternative Least Squares Algorithm
  • 5. Implementing ALS to Find Movie Recommendations

  • 8. Clustering Large Data Sets into Meaningful Groups
  • 1. Understanding the Clustering Setup
  • 2. Contrasting Clustering and Classification
  • 3. Document Clustering with K-Means
  • 4. Implementing K-Means Clustering

  • 9. Wrapping up and Next Steps
  • 1. Surveying Machine Learning Techniques
  • 2. Looking Ahead
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 40159
    حجم: 375 مگابایت
    مدت زمان: 189 دقیقه
    تاریخ انتشار: 1 آبان 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید