وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Hands-on Data Science Skills(Python Machine Learning,Pandas)

سرفصل های دوره

Explore Python, Pandas, Machine Learning Models; Train and deploy ML Model via a web app


1. Understanding Data Science and Its Importance
  • 1. Introduction.html
  • 2. What is Data Science.html
  • 3. Data Science vs. Data Engineering vs. Data Analysis.html
  • 4. Applications and Industry Impact.html

  • 2. Essential Tools and Technologies
  • 1. Overview of Programming Languages Python, R.html
  • 2. Introduction to SQL.html
  • 3. Data Science Libraries Pandas, NumPy, Matplotlib, Seaborn.html
  • 4. Types of Data Structured vs. Unstructured.html
  • 5. APIs and Data Retrieval.html

  • 3. Environment Setup
  • 1. Python Installation on Windows
  • 2. What are virtual environments
  • 3. Creating and activating a virtual environment on Windows
  • 4. Python Installation on macOS.html
  • 5. Creating and activating a virtual environment on macOS.html
  • 6. What is Jupyter Notebook.html
  • 7. Installing Pandas and Jupyter Notebook in the Virtual Environment
  • 8. Starting Jupyter Notebook
  • 9. Exploring Jupyter Notebook Server Dashboard Interface
  • 10. Creating a new Notebook
  • 11. Exploring Jupyter Notebook Source and Folder Files
  • 12. Exploring the Notebook Interface

  • 4. Data Manipulation and visualization with pandas
  • 1. Overview of Pandas.html
  • 2. Pandas Data Structures.html
  • 3. Creating a Pandas Series from a List
  • 4. Creating a Pandas Series from a List with Custom Index
  • 5. Creating a pandas series from a Python Dictionary
  • 6. Accessing Data in a Series using the index by label
  • 7. Accessing Data in a Series By position
  • 8. Slicing a Series by Label
  • 9. Creating a DataFrame from a dictionary of lists
  • 10. Creating a DataFrame From a list of dictionaries
  • 11. Accessing data in a DataFrame
  • 12. Download Dataset
  • 13. Loading Dataset into a DataFrame
  • 14. Inspecting the data
  • 15. Data Cleaning
  • 16. Data transformation and analysis
  • 17. Visualizing data

  • 5. Machine Learning Build ,Train and deploy a machine learning model
  • 1. What is Machine Learning.html
  • 2. Supervised Learning.html
  • 3. Unsupervised learning.html
  • 4. Reinforcement learning.html
  • 5. What is an Algorithm.html
  • 6. Installing and importing libraries
  • 7. Data Preprocessing.html
  • 8. What is a Dataset.html
  • 9. Downloading dataset
  • 10. Loading the dataset and creating a dataframe
  • 11. Exploring the Dataset
  • 12. Handle missing values and drop unnecessary columns.
  • 13. Encode categorical variables.
  • 14. What is Feature Engineering.html
  • 15. Create new features.
  • 16. Dropping unnecessary columns
  • 17. Visualize survival rate by gender
  • 18. Visualize survival rate by class
  • 19. Visualize numerical features
  • 20. Visualize the distribution of Age
  • 21. Visualize number of passengers in each passenger class
  • 22. Visualize number of passengers that survived
  • 23. Visualize the correlation matrix of numerical variables
  • 24. Visualize the distribution of Fare.
  • 25. Data Preparation and Training Model.html
  • 26. What is a Model.html
  • 27. Define features and target variable.
  • 28. Split data into training and testing sets.
  • 29. Standardize features.
  • 30. What is a logistic regression model..html
  • 31. Train logistic regression model.
  • 32. Making Predictions
  • 33. What is accuracy in machine learning.html
  • 34. What is confusion matrix..html
  • 35. What is is classification report..html
  • 36. What is a Heatmap.html
  • 37. Evaluate the model using accuracy, confusion matrix, and classification report.
  • 38. Visualize the confusion matrix.
  • 39. Saving the Model
  • 40. Loading the model
  • 41. Improving Understanding of the models prediction
  • 42. Building a decision tree
  • 43. Building a random forest

  • 6. Predicting real house prices using machine learning
  • 1. Importing Libraries and modules
  • 2. Loading dataset and creating a dataframe
  • 3. Checking for missing values
  • 4. Dropping column and splitting data
  • 5. Standardize the features for housing dataframe
  • 6. Initialize and train the regression model
  • 7. Make predictions on the test set.
  • 8. Evaluating the model for the housing dataset.
  • 9. Predicting a small sample of data
  • 10. Creating scatter plot
  • 11. Creating a bar plot
  • 12. Saving the housing model
  • 13. Loading the housing model

  • 7. Build a Web App House Price Prediction Tool
  • 1. What is Flask.html
  • 2. Installing Flask
  • 3. Installing Visual Studio Code
  • 4. Creating a minimal flask app
  • 5. How to run a flask app
  • 6. Http and Http Methods.html
  • 7. Loading the saved model and scaler into Python file
  • 8. Define the home route
  • 9. Define the prediction route
  • 10. Creating the template
  • 11. Adding a form to the template
  • 12. Displaying predictions and clearing form inputs
  • 13. Testing the prediction tool
  • 14. Exploring deployment and hosting options.html
  • 15. Create a new account on pythonanywhere
  • 16. Creating a new web app in PythonAnywhere
  • 17. Creating and activating a virtual environment on PythonAnywhere
  • 18. What is a WSGI File.html
  • 19. Configuring WSGI File
  • 20. Running your app in a cloud hosting environment
  • 21. Project files.html

  • 8. Python Crash Course
  • 1. Python Expressions
  • 2. Python Statements
  • 3. Python Code Comments
  • 4. Python Data Types
  • 5. Casting Data Types
  • 6. Python Variables
  • 7. Python List
  • 8. Python Tuple
  • 9. Python Dictionaries
  • 10. Python Operators
  • 11. Python Conditional Statements
  • 12. Python Loops
  • 13. Python Functions
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 39408
    حجم: 2113 مگابایت
    مدت زمان: 486 دقیقه
    تاریخ انتشار: 9 مرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید