وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

GANs and Diffusion Models in Machine Learning

سرفصل های دوره

If you’re looking for a crash course in generative modeling, this course was made for you. Generative adversarial networks (GANs) and diffusion models are some of the most important components of machine learning infrastructure. Join instructor Janani Ravi to find out more about how to get started building GANs with both dense neural as well as deep convolutional networks. Javani shows you the basics of how to train a deep convolutional GAN on multichannel images. Along the way, she gives you tips on how to get up and running with GANs using TensorFlow and diffusion models using PyTorch.


01 - Introduction
  • 01 - Overview of generative models
  • 02 - Applications of generative models

  • 02 - 1. Getting Started with Generative Adversarial Networks
  • 01 - Introducing GANs and diffusion models
  • 02 - Generator and discriminator
  • 03 - Architectural overview of a GAN
  • 04 - Training the generator and discriminator
  • 05 - Common problems with GANs

  • 03 - 2. Building a GAN Using a Dense Neural Network
  • 01 - Getting set up with Google Colab
  • 02 - Loading the fashion MNIST data set
  • 03 - The generator network
  • 04 - The discriminator network
  • 05 - Adversary loss functions
  • 06 - Training the generative adversarial network
  • 07 - Generating images using the GAN

  • 04 - 3. Building a GAN Using a Deep Convolutional Network
  • 01 - Overview of CNNs
  • 02 - Transposed convolutional layer
  • 03 - Deep Convolutional GANs
  • 04 - Greyscale images Generator and discriminator in a Deep Convolutional GAN
  • 05 - Greyscale images Training a Deep Convolutional GAN

  • 05 - 4. Training a Deep Convolutional GAN on Multichannel Images
  • 01 - Color images Loading multichannel image data
  • 02 - Color images Generator and discriminator in a Deep Convolutional GAN
  • 03 - Color images Training a Deep Convolutional GAN

  • 06 - 5. Getting Started with Diffusion Models
  • 01 - Generative learning trilemma
  • 02 - Introducing denoising diffusion probabilistic models
  • 03 - How do denoising diffusion probabilistic models work
  • 04 - Forward diffusion process
  • 05 - Reverse diffusion process
  • 06 - Training a diffusion model Intuition

  • 07 - 6. Running a Diffusion Model
  • 01 - Denoising diffusion probabilistic models Exploring implementation on GitHub
  • 02 - Denoising diffusion probabilistic models Code overview
  • 03 - Denoising diffusion probabilistic models Code tweaks
  • 04 - Denoising diffusion probabilistic models Generating images

  • 08 - Conclusion
  • 01 - Summary and next steps
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 1358
    حجم: 1793 مگابایت
    مدت زمان: 143 دقیقه
    تاریخ انتشار: ۲۶ دی ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید