وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Full Stack Python Development Building RealWorld Application

سرفصل های دوره

Master Python for Full Stack Development. Build scalable web apps, APIs, and databases using Django, Flask, and React.


1 - Introduction to Python and Lists
  • 1 -Python Lists Your Creative Toolkit
  • 2 -Mastering List Magic Advanced Techniques
  • 3 -From Data to Art Lists and Tuples in Action
  • 4 -Unleash Your Creativity with Sets
  • 5 -Organizing Your Art with Dictionaries
  • 6 -Text Alchemy String Manipulation in Python
  • 7 -Time as Art Working with Dates and Times in Python
  • 8 -Data-Driven Storytelling Customer Churn Prediction
  • 9 -The Power of Lambda Functional Programming for Artists
  • 10 -Map, Reduce, and Conquer Functional Programming Essentials
  • 11 -Building Blocks of Creativity Functions in Python
  • 12 -Function Mastery Arguments, Scope, and Beyond

  • 2 - Recursion and Global Variables
  • 1 -Recursive Art Unlocking Patterns with Python
  • 2 -Time as a Feature Engineering with Datetime
  • 3 -Unveiling the Iris Dataset A Machine Learning Prelude
  • 4 -Pythons Math and Random Toolbox
  • 5 -Exploring Your Data File Handling and EDA
  • 6 -Finding Patterns Correlation and Visualization
  • 7 -Data Distributions Telling Your Story
  • 8 -Spotting the Unusual Outlier Detection Techniques
  • 9 -Mastering Outliers Advanced Detection Strategies
  • 10 -Data Preparation The Foundation for Artful Insights

  • 3 - Logistic Regression Fundamentals
  • 1 -Logistic Regression From Zero to Hero
  • 2 -Demystifying Logistic Regression Math
  • 3 -Logistic Regression Real-World Examples You Cant Ignore
  • 4 -Data Cleaning The Unsung Hero of ML
  • 5 -Feature Engineering Magic Transform Your Data
  • 6 -Know Your Model Essential Evaluation Metrics
  • 7 -NLP for Beginners Start with Logistic Regression
  • 8 -Supercharge Your NLP with Advanced Techniques
  • 9 -Transfer Learning The NLP Shortcut You Need
  • 10 -Taming COVID-19 Data A Data Scientists Guide
  • 11 -Unmasking COVID-19 Trends Data-Driven Insights
  • 12 -The Machine Learning Lifecycle From Data to Deployment
  • 13 -Text Preprocessing Clean Up Your Act
  • 14 -Advanced Text Preprocessing Unlock Hidden Patterns
  • 15 -Telling Stories with Text Data EDA Mastery
  • 16 -Feature Engineering The Secret to NLP Success
  • 17 -Optimize Your Model Hyperparameter Tuning Tips
  • 18 -Finding the Perfect Hyperparameters A Practical Guide
  • 19 -Regularization Prevent Overfitting Like a Pro
  • 20 -Which Model Wins A Showdown
  • 21 -Linear Regression The Building Block of ML
  • 22 -Linear Regression Simple Models, Big Impact
  • 23 -Boost Your Linear Regression Game
  • 24 -Decision Trees Easy to Understand, Powerful to Use
  • 25 -Decision Trees The Building Blocks
  • 26 -Mastering Entropy and Information Gain
  • 27 -Avoid Overfitting Deep Dive into Decision Trees
  • 28 -Handling Categorical Data Decision Tree Style
  • 29 -Train and Conquer Decision Tree Mastery
  • 31 -Data Visualization Tell Your Story Visually
  • 32 -Spotting Trends Outliers and Correlations
  • 33 -Advanced Visualization Uncover Hidden Insights
  • 34 -Bivariate Analysis Uncover Relationships
  • 35 -Multivariate Analysis Mastering Complexity
  • 36 -Time Series Analysis Forecasting the Future
  • 37 -K-means Clustering Find Your People
  • 38 -Mastering K-means Tips and Tricks
  • 39 -K-means in Action Real-World Examples
  • 40 -Beyond K-means Advanced Clustering Techniques
  • 41 -Evaluating Your Clusters Does It Make Sense

  • 4 - Introduction to Deep Learning Concepts
  • 1 -The History of Deep Learning and Inspired by Neuroscience
  • 2 -Understanding Neural Networks Weights, Multi-Neuron Networks
  • 3 -Dive Deep into Backpropagation
  • 4 -Introduction to RNNs The Intuition Behind RNNs and Different Cells
  • 5 -Building RNNs with TensorFlow Hands-on Multiple Neural Networks
  • 6 -Training RNNs in TensorFlow Model Fit, Compile, and Execute
  • 7 -Optimizing Model Training Model Training with Number of Epochs
  • 8 -Sequence-to-Sequence Models Encoder and Decoder Models
  • 9 -LSTM Networks and Applications Random Initialization and LSTM Intuition
  • 10 -Implementing LSTMs with TensorFlow Custom Implementation
  • 11 -Introduction to Computer Vision Pixel Idea and Conversion into Arrays
  • 12 -Basics of Convolutional Neural Networks Padding and Kernel
  • 13 -Understanding Kernels in CNNs Different Kernels
  • 14 -Padding, Strides, and Pooling in CNNs
  • 15 -Data Augmentation and Optimization in CNNs Hands-on TensorFlow
  • 16 -Building and Training CNN Models
  • 17 -Implementing LSTMs with TensorFlow Preprocessing of Data
  • 18 -New! Building Generative Models with LSTMs Train Models with Hyperparameter Tun
  • 19 -Introduction to Computer Vision with Deep Learning Preprocessing and Training w
  • 20 -Training Deep Learning Models for Image Data 1500 Images on Training and Test D
  • 21 -Efficiently Handling Large Image Data Training Samples
  • 22 -Advanced Image Processing Techniques Cleaning and Preprocessing Data
  • 23 -Classification with Deep Learning 10 Classification Tasks
  • 24 -Model Evaluation and Transfer Learning Evaluating Models and Transformers
  • 25 -Interpreting Deep Learning Models Geometric Intuition of VGG16 Models
  • 26 -Optimizing Deep Learning Models Gradient Descent and Stochastic Gradient Descen
  • 27 -Advanced Optimization Techniques
  • 28 -Practical Deployment of Deep Learning Models Mathematical Equations
  • 29 -Deploying Models with Flask Understanding the Internals
  • 30 -Handling Requests with Keras and Flask Keras Models and GetPost Methods
  • 31 -Scaling Deep Learning Models Image CNN Animal in Action
  • 32 -Ensuring Low Latency in Model Deployment Getting Logs Flask Application
  • 33 -Flask Deployment Made Easy Step-by-Step Guide for Real-World Applications
  • 34 -Practical Flask Deployment for Beginners Go Live Today!

  • 5 - Introduction to Business Statistics
  • 1 -Introduction to Data Types and Business Statistics
  • 2 -Quantitative vs Qualitative Data A Comparative Analysis
  • 3 -Measures of Central Tendency Mean, Median, and Mode
  • 4 -Understanding Measures of Dispersion
  • 5 -Introduction to Distributions and the Central Limit Theorem
  • 6 -Sampling and Z-Scores
  • 7 -Hypothesis Testing and P-Value Interpretation
  • 8 -T-tests, Confidence Intervals, and ANOVA
  • 9 -Pearson Correlation Coefficient Explained
  • 10 -Advanced Hypothesis Testing and Correlation Analysis
  • 11 -Data Cleaning and Preprocessing Techniques
  • 12 -Visualising Data with Histograms and Box Plots
  • 13 -Summary Statistics and Variable Relationships
  • 14 -Correlation and Pair Plots
  • 15 -Handling High Correlation and Using Heat Maps

  • 6 - Foundations of Time Series Analysis
  • 1 -Introduction to Time Series Data
  • 2 -Understanding Time Series Components
  • 3 -Stationarity and Its Importance
  • 4 -ARIMA Model Fundamentals
  • 5 -Building and Evaluating ARIMA Models
  • 6 -Seasonal Time Series and Decomposition
  • 7 -Probability Distributions in Time Series
  • 8 -Descriptive Statistics and Exploratory Data Analysis
  • 9 -Hypothesis Testing and Confidence Intervals
  • 10 -Forecasting with ARIMA Models
  • 11 -Model Selection and Evaluation
  • 12 -Practical Forecasting and Model Improvement
  • 13 -Data Visualization for Time Series
  • 14 -Time Series in Python Practical Implementation
  • 15 -Real-world Case Studies and Applications
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 45153
    حجم: 10447 مگابایت
    مدت زمان: 1096 دقیقه
    تاریخ انتشار: ۷ تیر ۱۴۰۴
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید