وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Essential Code for Data-Science Projects COMPLETE COURSE

سرفصل های دوره

1. Introduction
  • 1. Installing the necessary software

  • 2. Interacting with data in external sources
  • 1. 1. How to effectively read an xlsx file
  • 2. Skip reading rows when reading a dataframe
  • 3. How to read a specific sheet from an excel file
  • 4. Set the index of a dataframe upon reading it
  • 5. Read specific columns from an excel file
  • 6. Read data from World Bank
  • 7. Send many dataframes into the same Excel file
  • 8. Send a dataframe to a CSV
  • 9. Hide Warnings
  • 10. Reading rows from topbottom (nrows, skipfooter)
  • 11. Check if an Excel cell is empty
  • 12. Check the version of the installed packages
  • 13. Hide special warnings

  • 3. Index of a dataframe
  • 1. 1. Set and reset the index
  • 2. Change the name of the index of a dataframe
  • 3. Find the rowcolumn index of any element of a dataframe
  • 4. The enumerate() command to enumerate rowselements
  • 5. Sort the index of a dataframe sort index

  • 4. Lists
  • 1. How to sort the elements of a list
  • 2. Remove elements from a list
  • 3. Create a sublist from another list
  • 4. List comprehension from consecutive numbers
  • 5. Print first last elements of a list
  • 6. Place in a list the elements of another list
  • 7. Remove all occurrences of an element
  • 8. pop() versus remove()
  • 9. List comprehensions
  • 10. Slicing
  • 11. Enumerate, index
  • 12. series.isin(list)
  • 13. Count how many times an element is in a list
  • 14. Make a copy and an alias of a list

  • 5. Important Dataframe operations
  • 1. Return elements from a dataframe
  • 2. Delete rows columns (iloc, drop)
  • 3. Read indices and values of a dataframe
  • 4. Show the max number of rowscolumns
  • 5. Create a copy of a dataframe
  • 6. Take a backup of a dataframe (copy versus =)
  • 7. Change specific values in a dataframe
  • 8. Make a new column and fill it with the values of another column
  • 9. Change the order of columns in a dataframe
  • 10. New row and fill it with the values of other rows
  • 11. New column with values 1,2,3... (arange)
  • 12. pivot tables
  • 13. Rename rows columns of a dataframe
  • 14. Use a dictionary to create a dataframe
  • 15. Transpose of a dataframe
  • 16. Select rowscolumns of a dataframe
  • 17. Repeat a rowcolumn (np.repeat)
  • 18. Sorting the columns
  • 19. Change the datatype of a rowcolumn (astype)
  • 20. Select specific rowscolumns (loc, arange)
  • 21. How to delete many rows from a dataframe
  • 22. Get the value under another column of the same row
  • 23. Use iteritems on a dataframe
  • 24. Sort the values of a column (sort values)
  • 25. Populate a column via list, array, series
  • 26. Define a dataframe with without a dictionary
  • 27. Define a dataframe using list comprehension

  • 6. The Apply command
  • 1. Format the values of a dataframe to percentages
  • 2. Format the elements of a dataframe to 1 decimal point
  • 3. Apply a function to the elements of a series dataframe

  • 7. Loops
  • 1. Prevent data transfer from dataframe to dictionary
  • 2. Prevent duplicate values in a dataframe
  • 3. Prevent duplicate values while using True, Break
  • 4. Break, continue, pass
  • 5. For, else
  • 6. While, For equivalence
  • 7. While True
  • 8. While , Else

  • 8. Multilevel (columns) dataframes
  • 1. How to define it
  • 2. How to rename a column
  • 3. How to remove a level
  • 4. Print levels in a single cell (merge cells)
  • 5. From merged (dataframe) to unmerged (excel)
  • 6. How to implement iteritems

  • 9. Conditionals
  • 1. If, elif
  • 2. inline if statement
  • 3. Print statement with if-else embedded

  • 10. Logicals
  • 1. AND, OR, FALSE, TRUE
  • 2. NOT
  • 3. The De Morgan Laws
  • 4. Comparison of int, str, Float, Bool
  • 5. Type conversions int , float, str, bool
  • 6. Combining NOT with empty string lists
  • 7. The meaning of x = None, [] ,
  • 8. Difference between is and =

  • 11. Tuples
  • 1. Iterate via for-loop
  • 2. Join two tuples
  • 3. Define a tuple
  • 4. Sort a tuple
  • 5. Enumerate a tuple (enumerate, index)
  • 6. Find the frequency of elements (count)
  • 7. Tuple immutability

  • 12. NaN values
  • 1. Remove NaN values by deleting rowscolumns
  • 2. How to find if a dataframe has NaN values
  • 3. Use min count to sum in presence of NaN values
  • 4. Place NaN values in a dataframe , manually
  • 5. Sum rows by ignoring NaN (skipna)
  • 6. Replace missing values with 0

  • 13. Python Implementation of Excel functions
  • 1. Modelling VLOOKUP in Python
  • 2. Modelling SUMIFS in Python
  • 3. Modelling AVERAGEIFS in Python

  • 14. Strings
  • 1. Evaluate String expressions using eval()
  • 2. Remove trailing characters using rstrip, lstrip
  • 3. Break a string in sets using wrap
  • 4. Select part of a string
  • 5. Remove white space using replace ()
  • 6. Search for multiple occurrences of a subtext
  • 7. Select specific characters from a column using str
  • 8. Replace a character or a word from inside a string
  • 9. Unite strings from inside a list using join
  • 10. Multiline strings
  • 11. Formating strings and f-strings (format)
  • 12. Count how many times a character is inside a string
  • 13. in, find() with strings
  • 14. right-justify text using rjust

  • 15. Creating variables
  • 1. Using the function globals()
  • 2. Multiple assignment
  • 3. Use global to change variables

  • 16. Sets
  • 1. Define a set, addremove elements
  • 2. Convert a liststring to a set
  • 3. Difference of two sets symmetric difference
  • 4. Set comprehension
  • 5. Subset, superset, proper subsetsuperset
  • 6. Intersection and union

  • 17. Series
  • 1. Edit strings inside series using. .str[]
  • 2. Create a series object of a constant value
  • 3. Select a column as Series versus as a Dataframe
  • 4. Broadcasting (saving) an array to a Series

  • 18. Numpy arrays
  • 1. Concatenate two arrays
  • 2. linspace (equally spaced numbers)
  • 3. Reshaping the array
  • 4. 1D, 2D, 3D arrays from lists
  • 5. Modify elements of an array
  • 6. Use arange to make 1D and 2D arrays
  • 7. eye, ones, zeros
  • 8. flattening an array

  • 19. Functions
  • 1. Docstring
  • 2. Count how many times a function is called
  • 3. How to return many values from a function
  • 4. Default values for parameters
  • 5. A function calling another function

  • 20. Date objects
  • 1. Update a DateTimeIndex
  • 2. The Workalendar package for Country dates
  • 3. Timedelta() for time conversions

  • 21. Datatypes
  • 1. Use name
  • 2. Check if the datatype is int float str NaN None
  • 3. dtypes, astype() and the type of the dataframe elements
  • 4. Converting elements of a column via astype

  • 22. Dictionaries
  • 1. Define and loop through a dictionary
  • 2. Find the number of elements in a dictionary
  • 3. Convert to a listset of keysvalues
  • 4. Convert a dataframe to a dictionary
  • 5. Print the first 6 elements of a dictionary
  • 6. What it means for x in dictionary
  • 7. Convert a single value into a dictionary (keys)
  • 8. Avoid errors when a key is not found (get)
  • 9. Join two dictionaries ()
  • 10. Dictionary comprehension
  • 11. Delete a key from a dictionary
  • 12. Sort a dictionary
  • 13. Mutability of a dictionary

  • 23. Special dictionaries
  • 1. Default dictionaries

  • 24. Maths
  • 1. Trigonometry, infinity, pi
  • 2. regular division, integer division, modulo division, , %
  • 3. dot product of 2 arrays

  • 25. Errors
  • 1. Try Except block
  • 2. the finally statement
  • 3. Raise errors based on user input
  • 4. How to raise own errors

  • 26. The Random package
  • 1. random choice
  • 2. randint
  • 3. randrange
  • 4. random.random, random.seed
  • 5. random.sample (sample without replacement)
  • 6. Fix the random seeds using a function
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 24626
    حجم: 5341 مگابایت
    مدت زمان: 792 دقیقه
    تاریخ انتشار: ۲۱ آذر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید