وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

DP-500: Microsoft Azure and Microsoft Power BI Online Training

سرفصل های دوره

This intermediate DP-500 prepares learners to take full control of a data analytics solution at the largest possible scale using Microsoft Power BI and tools available in Microsoft Azure.

If you're at the point in your career where you're considering a job in data analytics solutions that work at the enterprise level, you may think the skills necessary to be excellent in the field come naturally to some people and not others. But that's not true – designing, creating, and deploying large data analytics solutions are skills you can learn and practice.


1 Govern a Data Landscape with Microsoft Purview
  • 1 Introducing Microsoft Purview
  • 2 The Point of Purview
  • 3 Deploy the Purview Resource
  • 4 Configure a User Assigned Managed Identity
  • 5 Register and Scan Data
  • 6 Browse and Edit Catalog Assets

  • 2 Administer Power BI with Powershell and REST APIs
  • 7 Automate Power BI Administration
  • 8 A Primer on PowerShell
  • 9 Login and Get Power BI Data
  • 10 Change Power BI Admin Data
  • 11 Prepare for REST API Administration
  • 12 Use the REST API (with PowerShell)

  • 3 Integrate Power BI into an Existing Infrastructure
  • 13 Integrating Power BI In An Existing Infrastructure
  • 14 Plan for Power BI Integration
  • 15 Configure Capacity Settings
  • 16 Deploy and Use an On-Premises Data Gateway
  • 17 Connect to Azure Data Lake Storage Gen 2
  • 18 Work with Azure Synapse Analytics Workspaces

  • 4 Utilize Source Control with Power BI Resources
  • 19 Introducing Source Control in Analytics
  • 20 The Github Crash Course
  • 21 Using OneDrive for Version Control
  • 22 Extract a Data Model
  • 23 Leveraging Source Control in Azure Synapse

  • 5 Deploy and Manage Datasets Using XMLA Endpoints
  • 24 Introducing the XMLA Endpoint
  • 25 The Point of the XMLA Endpoint (and APIs)
  • 26 XMLA Endpoint Governance and Management
  • 27 Querying and Processing with SSMS
  • 28 Deploying Data Models with Tabular Editor 3
  • 29 Connecting to XMLA with DAX Studio
  • 30 Schema Compare and Deployment with ALM Toolkit

  • 6 Implement Power BI Deployment Pipelines
  • 31 Introducing Power BI Pipelines
  • 32 How Pipelines Work
  • 33 Create the Premium Workspaces
  • 34 Deploy a Report through Production
  • 35 Manage Deployment Options
  • 36 Automate Pipelines with Azure DevOps
  • 37 Summarizing Power BI Pipelines

  • 7 Understand ETL and Data Warehouse Concepts
  • 38 Introducing Data Warehouse Concepts
  • 39 Data Warehouse Designs
  • 40 ETL Concepts
  • 41 Other Data Warehouse Resources

  • 8 Implement, Load, and Query a Dedicated SQL Pool in Azure Synapse
  • 42 Introducing Managing a Dedicated SQL Pool
  • 43 Create Tables
  • 44 Stage Data into Staging Tables
  • 45 Load Data into a Dimension Table
  • 46 Query Data in a Data Warehouse
  • 47 Summarizing Data Warehouse Implementation

  • 9 Query Data with Serverless SQL Pools
  • 48 Introducing Querying with Serverless SQL Pools
  • 49 Understand the Point of SQL Pools
  • 50 Perform a Basic Serverless Query
  • 51 Query JSON Files
  • 52 Query Into a Filepath
  • 53 Create a Database of External Sources

  • 10 Query and Visualize Data Using Apache Spark in Azure Synapse
  • 54 Introducing Apache Spark Pools
  • 55 Deploy an Apache Spark pool
  • 56 Perform a basic Pyspark Query
  • 57 Define a Schema and Filter Query Results
  • 58 Create a Catalog
  • 59 Query Data with Apache Spark
  • 60 Visualize Data in the Results Pane

  • 11 Use the ML PREDICT T-SQL Function
  • 61 Introducing the PREDICT Function
  • 62 Set Up an ML Dev Environment
  • 63 Generate the ONNX File
  • 64 Load the Model into the Data Warehouse
  • 65 Load the Data into the Data Warehouse
  • 66 Use the PREDICT T-SQL Function

  • 12 Query Advanced Data Sources using Power BI
  • 67 Introducing Advanced Data Source Querying in Power BI
  • 68 A Primer on JSON Data
  • 69 Connect to and Query JSON Files
  • 70 Connect to an API
  • 71 Connect to Parquet Files
  • 72 Set Up a ML Model
  • 73 Consume the ML Model in Power Query
  • 74 Deploy and Refresh the Model

  • 13 Understand Enterprise Data Model Scalability Concepts
  • 75 Understanding Data Model Scalability Designs
  • 76 Understand Your Storage Mode Options
  • 77 The Import Storage Mode
  • 78 The DirectQuery Storage Mode
  • 79 The Composite Storage Mode
  • 80 Designing with Scalability in Mind

  • 14 Deploy Power BI Dataflows
  • 81 Introducing Power BI Dataflows
  • 82 How Dataflows Work
  • 83 Deploy a Dataflow
  • 84 Set up Refresh Schedules
  • 85 Edit and Add Additional Datasources
  • 86 Maintaining and Endorsing Dataflows

  • 15 Optimize Power Query and Report Performance
  • 87 Introducing Power Query Optimization
  • 88 Power Query Diagnostic Tracing
  • 89 Report Analyzer
  • 90 Tracing with SQL Profiler
  • 91 Premium Capacity Metrics App
  • 92 Fix Native Queries
  • 93 Remove AutoDate

  • 16 Create Calculation Groups in Tabular Editor
  • 94 Introducing Calculation Groups
  • 95 Understand the Problem with Measures
  • 96 Explore Calculation Groups
  • 97 Create Calculated Items
  • 98 Clean Up the Calculation Group
  • 99 Summarizing Calculation Groups
  • 100 Challenge- Work Through Your Own Lab-

  • 17 Create Queries, Functions, and Parameters by using the Power Query Advanced Editor
  • 101 Introducing M in the Advanced Editor
  • 102 Understand the Advanced Editor Syntax
  • 103 Create a Basic Function
  • 104 Use a Built-In Number Function
  • 105 Create a Function with Conditions
  • 106 Create a Table Function
  • 107 Utilize Parameters

  • 18 Implement Row and Object Level Security
  • 108 Introducing Row and Object Level Security
  • 109 Understand Row and Object Level Security
  • 110 Implement Fixed Row Level Security
  • 111 Implement Dynamic Row Level Security
  • 112 DirectQuery Row Level Security Considerations
  • 113 Implement Object Level Security

  • 19 Leverage DirectQuery and Composite Data Models
  • 114 Introducing DirectQuery
  • 115 Pros and Cons of DirectQuery - Part 1
  • 116 Pros and Cons of DirectQuery - Part 2
  • 117 Basic DirectQuery Refresher
  • 118 Reduce the Query Workload
  • 119 Configure Dashboard Refresh Intervals
  • 120 Use Composite Models
  • 121 Summarizing DirectQuery

  • 20 Optimize Data Models Using Third-Party Tools
  • 122 Introducing Data Model Optimizations with Third Party Tools
  • 123 Performance Analyzer
  • 124 Understand VertiPaq Engine - Part 1
  • 125 Understand VertiPaq Engine - Part 2
  • 126 DAX Studio Server Timings
  • 127 Model Metrics
  • 128 Best Practices Analyzer in Tabular Editor
  • 129 Summarizing Data Model Optimization

  • 21 Use Advanced Visuals in Power BI
  • 130 Introducing Advanced Power BI Visuals
  • 131 Visual Best Practices
  • 132 Use Themes
  • 133 Implement Personalized Views
  • 134 Implement Perspectives
  • 135 Create R Visuals
  • 136 Create Python Visuals

  • 22 Create Power BI Paginated Reports
  • 137 Introducing Power BI Paginated Reports
  • 138 Before You Begin...
  • 139 Connecting to a Data Source
  • 140 Creating a Dataset
  • 141 Creating a Table Visual
  • 142 Using Parameters
  • 143 Adding Charts to the Visual
  • 144 Deploying a Paginated Report to Power BI
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    مدرس:
    شناسه: 6706
    حجم: 14734 مگابایت
    مدت زمان: 1218 دقیقه
    تاریخ انتشار: ۸ اسفند ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید