وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

DP-100 Azure Data Scientist Associate Complete Exam Guide

سرفصل های دوره

Complete DP-100 Azure Machine Learning training guide to prepare you for DP-100, with practice exams on DP 100 Azure ML


1 - Introduction
  • 1 - What is DP100
  • 2 - What are the objectives of this course
  • 3 - Course roadmap
  • 4 - DP-100-Curriculum.pdf
  • 4 - Learning objectives
  • 5 - Instructor overview
  • 6 - Ways to reach out
  • 7 - Keys to success
  • 8 - Leave a rating
  • 9 - Watch in 1080p

  • 2 - Environment Setup
  • 10 - Create an Azure account
  • 11 - Cost management in Azure
  • 12 - ReferenceMaterial.zip
  • 12 - Reference material
  • 13 - DP-100-Resources-PreReqs.pdf
  • 13 - Resources and prerequisites
  • 14 - Helpful advice from students

  • 3 - LO1 Design and prepare a machine learning solution 2025
  • 15 - 111 Determine the appropriate compute specifications
  • 16 - 112 Model deployment requirements
  • 17 - 113 Choice to development approach to build or train a model
  • 18 - 121 Create an Azure Machine Learning workspace
  • 19 - 121 Walkthrough of workspace
  • 20 - 121 Resources created by ML workspace
  • 21 - 121 How to access Azure ML tools
  • 22 - 121 Create a compute instance
  • 23 - 121 Run python SDK import statements
  • 24 - 121 Stopping compute instance
  • 25 - 131 Create Azure Data resources
  • 26 - 132 Create and register a datastore
  • 27 - 132 Example of transfering files to datastore
  • 28 - 133 Create a data asset
  • 29 - 133 Register a data asset through SDK
  • 30 - 133 Register and consume data assets through SDK

  • 4 - LO2 Explore data and train models 3540
  • 31 - 211 Load and transform data
  • 32 - 212 Analyze data using Azure Data Explorer 1
  • 33 - 212 Analyze data using Azure Data Explorer 2
  • 34 - 212 Use profile mechanics to explore data
  • 35 - 221 Create a training pipeline introduction
  • 36 - 222 Consume data assets into the designer
  • 37 - 223 Use data preparation components in designer
  • 38 - 223 Training model and scoring components in designer
  • 39 - 223 Evaluating trained model components in designer
  • 40 - 223 Evaluation results defined
  • 41 - 224 Context and usecase for custom code components
  • 42 - 224 Adding custom python code in custom components in designer
  • 43 - 231 Automated ML introduction
  • 44 - 231 Automated ML regression and tabular data example 1
  • 45 - 231 Automated ML regression and tabular data example 2
  • 46 - 231 Automated ML regression and tabular data example 3
  • 47 - 232 Automated ML natural language processing NLP example
  • 48 - 234 Training options in Automated ML including preprocessing and algorithms
  • 49 - 241 Develop code using a compute instance
  • 50 - 242 Consume data in a notebook
  • 51 - 243 How to run an experiment
  • 52 - 244 245 Evaluate and train a model using Python SDK 1
  • 53 - 244 245 Evaluate and train a model using Python SDK 2
  • 54 - 244 245 Evaluate and train a model using Python SDK 3
  • 55 - 244 245 Run experiments and measure impact on evaluation metrics

  • 5 - LO3 Prepare a model for deployment 2025
  • 56 - 311 Introduction to model training scripts
  • 57 - 311 313 314 316 317 Run model training script endtoend 1
  • 58 - 311 313 314 316 317 Run model training script endtoend 2
  • 59 - 311 313 314 316 317 Run model training script endtoend 3
  • 60 - 311 313 314 316 317 Run model training script endtoend 4
  • 61 - 311 313 314 316 317 Run model training script endtoend 5
  • 62 - 318 312 Configure compute and set up script parameters set up
  • 63 - 318 312 Using script parameters
  • 64 - 318 312 Cycling through script parameters
  • 65 - 318 312 Testing different script parameters
  • 66 - 318 312 Configure compute for a job run
  • 67 - 318 312 Adding compute to an environment
  • 68 - 318 312 Deleting a compute through Python SDK
  • 69 - 321 Introduction to pipelines
  • 70 - 321 Pipeline context
  • 71 - 321 Create a prepare data step in pipeline
  • 72 - 321 Create a train model step in pipeline
  • 73 - 321 Fix errors in pipeline
  • 74 - 321 Create a pipeline run script
  • 75 - 322 Pass data between steps in pipeline
  • 76 - 323 Run the pipeline
  • 77 - 323 Other ways to run the pipeline
  • 78 - 323 Publishing the endpoint
  • 79 - 323 Create a pipeline endpoint
  • 80 - 323 Call an endpoint 1
  • 81 - 323 Call an endpoint 2
  • 82 - 324 Monitor pipeline runs

  • 6 - LO4 Deploy and retrain a model 1015
  • 83 - 411 413 415 Introduction to deploying model
  • 84 - 411 413 415 Create a model to be deployed
  • 85 - 411 413 415 Configure model for a realtime deployment
  • 86 - 411 413 415 Removing the dependent variable
  • 87 - 411 413 415 Deploy a model to a realtime endpoint
  • 88 - 411 413 415 Test a realtime deployed service
  • 89 - 411 413 415 Consume the deployed model in endpoint
  • 90 - 411 413 415 Make modifications to deployed model
  • 91 - 411 413 415 Redeploy a model

  • 7 - Practice Exams

    8 - Conclusion
  • 92 - Congratulations
  • 93 - Conclusion and next steps
  • 94 - Ways to reach out
  • 95 - Certificate

  • 9 - Bonus
  • 96 - Bonus
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 4980
    حجم: 4773 مگابایت
    مدت زمان: 519 دقیقه
    تاریخ انتشار: ۱۲ بهمن ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید