وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Distributed Machine Learning Patterns, Video Edition

سرفصل های دوره
  • 001. Part 1. Basic concepts and background
  • 002. Chapter 1. Introduction to distributed machine learning systems
  • 003. Chapter 1. Distributed systems
  • 004. Chapter 1. Distributed machine learning systems
  • 005. Chapter 1. What we will learn in this book
  • 006. Chapter 1. Summary
  • 007. Part 2. Patterns of distributed machine learning systems
  • 008. Chapter 2. Data ingestion patterns
  • 009. Chapter 2. The Fashion-MNIST dataset
  • 010. Chapter 2. Batching pattern
  • 011. Chapter 2. Sharding pattern Splitting extremely large datasets among multiple machines
  • 012. Chapter 2. Caching pattern
  • 013. Chapter 2. Answers to exercises
  • 014. Chapter 2. Summary
  • 015. Chapter 3. Distributed training patterns
  • 016. Chapter 3. Parameter server pattern Tagging entities in 8 million YouTube videos
  • 017. Chapter 3. Collective communication pattern
  • 018. Chapter 3. Elasticity and fault-tolerance pattern
  • 019. Chapter 3. Answers to exercises
  • 020. Chapter 3. Summary
  • 021. Chapter 4. Model serving patterns
  • 022. Chapter 4. Replicated services pattern Handling the growing number of serving requests
  • 023. Chapter 4. Sharded services pattern
  • 024. Chapter 4. The event-driven processing pattern
  • 025. Chapter 4. Answers to exercises
  • 026. Chapter 4. Summary
  • 027. Chapter 5. Workflow patterns
  • 028. Chapter 5. Fan-in and fan-out patterns Composing complex machine learning workflows
  • 029. Chapter 5. Synchronous and asynchronous patterns Accelerating workflows with concurrency
  • 030. Chapter 5. Step memoization pattern Skipping redundant workloads via memoized steps
  • 031. Chapter 5. Answers to exercises
  • 032. Chapter 5. Summary
  • 033. Chapter 6. Operation patterns
  • 034. Chapter 6. Scheduling patterns Assigning resources effectively in a shared cluster
  • 035. Chapter 6. Metadata pattern Handle failures appropriately to minimize the negative effect on users
  • 036. Chapter 6. Answers to exercises
  • 037. Chapter 6. Summary
  • 038. Part 3. Building a distributed machine learning workflow
  • 039. Chapter 7. Project overview and system architecture
  • 040. Chapter 7. Data ingestion
  • 041. Chapter 7. Model training
  • 042. Chapter 7. Model serving
  • 043. Chapter 7. End-to-end workflow
  • 044. Chapter 7. Answers to exercises
  • 045. Chapter 7. Summary
  • 046. Chapter 8. Overview of relevant technologies
  • 047. Chapter 8. Kubernetes The distributed container orchestration system
  • 048. Chapter 8. Kubeflow Machine learning workloads on Kubernetes
  • 049. Chapter 8. Argo Workflows Container-native workflow engine
  • 050. Chapter 8. Answers to exercises
  • 051. Chapter 8. Summary
  • 052. Chapter 9. A complete implementation
  • 053. Chapter 9. Model training
  • 054. Chapter 9. Model serving
  • 055. Chapter 9. The end-to-end workflow
  • 056. Chapter 9. Summary
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38106
    حجم: 6596 مگابایت
    مدت زمان: 381 دقیقه
    تاریخ انتشار: 9 تیر 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید