وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Deployment of Machine Learning Models

سرفصل های دوره

Learn how to integrate robust and reliable Machine Learning Pipelines in Production


01 - Introduction
  • 001 Introduction to the course
  • 002 Course curriculum overview
  • 003 Course requirements
  • 004 Setting up your computer.html
  • 005 Course Material
  • 006 The code.html
  • 007 Presentations.html
  • 008 Download Dataset.html
  • 009 Additional Resources for the required skills.html
  • 010 How to approach the course

  • 02 - Overview of Model Deployment
  • 001 Deployments of Machine Learning Models
  • 002 Deployment of Machine Learning Pipelines
  • 003 Research and Production Environment
  • 004 Building Reproducible Machine Learning Pipelines
  • 005 Challenges to Reproducibility
  • 006 Streamlining Model Deployment with Open-Source
  • 007 Additional Reading Resources.html

  • 03 - Machine Learning System Architecture
  • 001 Machine Learning System Architecture and Why it Matters
  • 002 03.2-Notes.pdf
  • 002 Specific Challenges of Machine Learning Systems
  • 003 03.3-Notes.pdf
  • 003 Principles for Machine Learning Systems
  • 004 03.4-Notes.pdf
  • 004 Machine Learning System Architecture Approaches
  • 005 Machine Learning System Component Breakdown
  • 006 Additional Reading Resources.html

  • 04 - Research Environment - Developing a Machine Learning Model
  • 001 Research Environment - Process Overview
  • 002 Machine Learning Pipeline Overview
  • 003 Feature Engineering - Variable Characteristics
  • 004 Feature Engineering Techniques
  • 005 Feature Selection
  • 006 Training a Machine Learning Model
  • 007 Research environment - second part.html
  • 008 Code covered in this section.html
  • 009 Python library versions.html
  • 010 Data analysis demo - missing data
  • 011 Data analysis demo - temporal variables
  • 012 Data analysis demo - numerical variables
  • 013 Data analysis demo - categorical variables
  • 014 Feature engineering demo 1
  • 015 Feature engineering demo 2
  • 016 Feature selection demo
  • 017 Model training demo
  • 018 Scoring new data with our model
  • 019 Research environment - third part.html
  • 020 Python Open Source for Machine Learning
  • 021 Open Source Libraries for Feature Engineering
  • 022 Feature engineering with open source demo
  • 023 Research environment - fourth part.html
  • 024 Intro to Object Oriented Programing
  • 025 Inheritance and the Scikit-learn API
  • 026 Create Scikit-Learn compatible transformers
  • 027 Create transformers that learn parameters
  • 028 Feature engineering pipeline demo
  • 029 Should feature selection be part of the pipeline
  • 030 Research environment - final section.html
  • 031 Getting Ready for Deployment - Final Pipeline
  • 032 Bonus Additional Resources on Scikit-Learn.html
  • external-links.txt

  • 05 - Packaging The Model for Production
  • 001 Introduction to Production Code
  • 002 Repo for this section.html
  • 003 Code Overview
  • 003 dmlm-notebook-to-code-diagram.zip
  • 004 Understanding the Reasoning Behind the Prod Code Structure
  • 005 Reminder Download the Kaggle Data.html
  • 006 Package Requirements Files
  • 007 Working with tox [Do NOT skip - important]
  • 008 Migrating from Tox 3 to Tox 4.html
  • 009 Troubleshooting Tox.html
  • 010 Package Config
  • 011 The Model Training Script & Pipeline
  • 012 Introduction to Pytest [Optional]
  • 013 Feature Engineering Code in the Package
  • 014 Making Predictions with the Package
  • 015 Building the Package
  • 016 Tooling
  • 017 Section Notes & Further Reading.html

  • 06 - Serving and Deploying the model via REST API
  • 001 Running the API Locally
  • 002 Understanding the Architecture of the API
  • 003 Introduction to FastAPI
  • 004 The API Endpoints
  • 005 Using Schemas in our API
  • 006 Logging in our Application
  • 007 The Uvicorn Web Server
  • 008 Introducing Railway App and Platform as a Service
  • 009 What Is a Platform as a Service (PaaS)
  • 010 Why Use Railway as Our PaaS
  • 011 Railway Links.html
  • 012 Deploying our ML Application to Railway - Hands On
  • 013 Limitations to Be Aware Of & Wrap Up
  • 014 Section Notes & Further Reading.html

  • 07 - Continuous Integration and Deployment Pipelines
  • 001 Introduction to CICD
  • 002 Setting up CircleCI
  • 003 CICD Automation Overview Part 1
  • 004 CICD Config Explanation
  • 005 CICD Automation Overview Part 2
  • 006 Using a Private Index Server (Gemfury)
  • 007 Hands on Run the CI Tests in your own Github Fork
  • 008 Hands on Run the CI Deploy on Your Own Github Fork
  • 009 Hands on Run the CI Publish on Your Own Github Fork
  • 010 Section Notes & Further Reading.html

  • 08 - Deploying The ML API With Containers
  • 001 Docker Refresher [Optional - For those unfamiliarrusty with Docker]
  • 001 docker-notes.pdf
  • 002 The Value of Docker and Containers
  • 003 Understanding The Container Deployment Process
  • 004 Docker Install Setup.html
  • 005 Hands On Containerising the App Locally
  • 006 Updating the CI Pipeline for a Container Deployment
  • 007 Section Notes & Further Reading.html

  • 09 - Differential Testing
  • 001 Attention !!! - This section still works with old version of code.html
  • 002 How to Use the Course Resources
  • 002 Section5.3a-Notes.pdf
  • 003 9.1 - Introduction
  • 004 9.2 - Setting up Differential Tests
  • 004 Section9.2-Notes.pdf
  • 005 9.3 - Differential Tests in CI (Part 1 of 2)
  • 006 9.4 - Differential Tests in CI (Part 2 of 2)
  • 006 Section9.4-Notes.pdf
  • 007 9.5 Wrap Up
  • 007 Section9.5-Notes.pdf

  • 10 - Deploying to IaaS (AWS ECS)
  • 001 Attention!!! We are currently updating this section.html
  • 002 12.1 - Introduction to AWS
  • 003 12.2 - AWS Costs and Caution
  • 003 Section12.2-Notes.pdf
  • 004 12.3a - Intro to AWS ECS
  • 004 Section12.3-Notes.pdf
  • 005 12.3b - Container Orchestration Options Kubernetes, ECS, Docker Swarm
  • 005 Section12.3-Notes.pdf
  • 006 12.4 - Create an AWS Account
  • 006 Section12.4-Notes.pdf
  • 007 12.5 - Setting Permissions with IAM
  • 007 Section12.5-Notes.pdf
  • 008 12.6 - Installing the AWS CLI
  • 008 Section12.6-Notes.pdf
  • 009 12.7 - Configuring the AWS CLI
  • 009 Section12.7-Notes.pdf
  • 010 12.8 - Intro the Elastic Container Registry (ECR)
  • 010 Section12.8-Notes.pdf
  • 011 12.9 - Uploading Images to the Elastic Container Registry (ECR)
  • 011 Section12.9-Notes.pdf
  • 012 12.10 - Creating the ECS Cluster with Fargate Launch Method
  • 012 Section12.10-Notes.pdf
  • 013 12.11 - Updating the Cluster Containers
  • 013 Section12.12-Notes.pdf
  • 014 12.12 - Tearing down the ECS Cluster
  • 014 Section12.13-Notes.pdf
  • 015 12.13 - Deploying to ECS via the CI pipeline
  • 015 Section12.14-Notes.pdf
  • 016 12.14 - Wrap Up
  • 016 Section12.15-Notes.pdf

  • 11 - A Deep Learning Model with Big Data
  • 001 Challenges of using Big Data in Machine Learning
  • 002 Installing Keras.html
  • 003 Download the data set.html
  • 004 Introduction to a Large Dataset - Plant Seedlings Images
  • 005 Building a CNN in the Research Environment
  • 005 CNN-Analysis-and-Model.zip
  • 006 CNNProdCode.zip
  • 006 Production Code for a CNN Learning Pipeline
  • 007 Reproducibility in Neural Networks
  • 008 Setting the Seed for Keras.html
  • 009 Seed for Neural Networks - Additional reading resources.html
  • 010 13.8 - Packaging the CNN
  • 010 Section13.8-Notes.pdf
  • 011 13.9 - Adding the CNN to the API
  • 011 Section13.9-Notes.pdf
  • 012 13.10 - Additional Considerations and Wrap Up
  • 012 Section13.10-Notes.pdf

  • 12 - Common Issues found during deployment
  • 001 Troubleshooting.html
  • 001 Troubleshooting.pdf

  • 13 - Appendix Former Section Serving the model via REST API
  • 001 Appendix - PLEASE READ.html
  • 002 7.1 - Introduction
  • 002 Section7.1-Notes.pdf
  • 003 Primer on Monorepos
  • 003 Section5.3c-Notes.pdf
  • 004 7.2 - Creating the API Skeleton
  • 004 Section7.2-Notes.pdf
  • 005 7.2b - Note On Flask.html
  • 006 7.3 - Adding Config and Logging
  • 006 Section7.3-Notes.pdf
  • 007 7.4 - Adding the Prediction Endpoint
  • 007 Section7.4-Notes.pdf
  • 008 7.5 - Adding a Version Endpoint
  • 008 Section7.5-Notes.pdf
  • 009 7.6 - API Schema Validation
  • 009 Section7.6-Notes.pdf
  • 010 7.7 - Wrap Up

  • 14 - Final Section
  • 001 Congratulations.html
  • 002 Bonus lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 19064
    حجم: 5185 مگابایت
    مدت زمان: 596 دقیقه
    تاریخ انتشار: ۲۰ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید