001 Research Environment - Process Overview
002 Machine Learning Pipeline Overview
003 Feature Engineering - Variable Characteristics
004 Feature Engineering Techniques
005 Feature Selection
006 Training a Machine Learning Model
007 Research environment - second part.html
008 Code covered in this section.html
009 Python library versions.html
010 Data analysis demo - missing data
011 Data analysis demo - temporal variables
012 Data analysis demo - numerical variables
013 Data analysis demo - categorical variables
014 Feature engineering demo 1
015 Feature engineering demo 2
016 Feature selection demo
017 Model training demo
018 Scoring new data with our model
019 Research environment - third part.html
020 Python Open Source for Machine Learning
021 Open Source Libraries for Feature Engineering
022 Feature engineering with open source demo
023 Research environment - fourth part.html
024 Intro to Object Oriented Programing
025 Inheritance and the Scikit-learn API
026 Create Scikit-Learn compatible transformers
027 Create transformers that learn parameters
028 Feature engineering pipeline demo
029 Should feature selection be part of the pipeline
030 Research environment - final section.html
031 Getting Ready for Deployment - Final Pipeline
032 Bonus Additional Resources on Scikit-Learn.html
external-links.txt