وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Deployment of Machine Learning Models

سرفصل های دوره

Learn how to integrate robust and reliable Machine Learning Pipelines in Production


01 - Introduction
  • 001 Introduction to the course
  • 002 Course curriculum overview
  • 003 Course requirements
  • 004 Setting up your computer.html
  • 005 Course Material
  • 006 The code.html
  • 007 Presentations.html
  • 008 Download Dataset.html
  • 009 Additional Resources for the required skills.html
  • 010 How to approach the course

  • 02 - Overview of Model Deployment
  • 001 Deployments of Machine Learning Models
  • 002 Deployment of Machine Learning Pipelines
  • 003 Research and Production Environment
  • 004 Building Reproducible Machine Learning Pipelines
  • 005 Challenges to Reproducibility
  • 006 Streamlining Model Deployment with Open-Source
  • 007 Additional Reading Resources.html

  • 03 - Machine Learning System Architecture
  • 001 Machine Learning System Architecture and Why it Matters
  • 002 03.2-Notes.pdf
  • 002 Specific Challenges of Machine Learning Systems
  • 003 03.3-Notes.pdf
  • 003 Principles for Machine Learning Systems
  • 004 03.4-Notes.pdf
  • 004 Machine Learning System Architecture Approaches
  • 005 Machine Learning System Component Breakdown
  • 006 Additional Reading Resources.html

  • 04 - Research Environment - Developing a Machine Learning Model
  • 001 Research Environment - Process Overview
  • 002 Machine Learning Pipeline Overview
  • 003 Feature Engineering - Variable Characteristics
  • 004 Feature Engineering Techniques
  • 005 Feature Selection
  • 006 Training a Machine Learning Model
  • 007 Research environment - second part.html
  • 008 Code covered in this section.html
  • 009 Python library versions.html
  • 010 Data analysis demo - missing data
  • 011 Data analysis demo - temporal variables
  • 012 Data analysis demo - numerical variables
  • 013 Data analysis demo - categorical variables
  • 014 Feature engineering demo 1
  • 015 Feature engineering demo 2
  • 016 Feature selection demo
  • 017 Model training demo
  • 018 Scoring new data with our model
  • 019 Research environment - third part.html
  • 020 Python Open Source for Machine Learning
  • 021 Open Source Libraries for Feature Engineering
  • 022 Feature engineering with open source demo
  • 023 Research environment - fourth part.html
  • 024 Intro to Object Oriented Programing
  • 025 Inheritance and the Scikit-learn API
  • 026 Create Scikit-Learn compatible transformers
  • 027 Create transformers that learn parameters
  • 028 Feature engineering pipeline demo
  • 029 Should feature selection be part of the pipeline
  • 030 Research environment - final section.html
  • 031 Getting Ready for Deployment - Final Pipeline
  • 032 Bonus Additional Resources on Scikit-Learn.html
  • external-links.txt

  • 05 - Packaging The Model for Production
  • 001 Introduction to Production Code
  • 002 Repo for this section.html
  • 003 Code Overview
  • 003 dmlm-notebook-to-code-diagram.zip
  • 004 Understanding the Reasoning Behind the Prod Code Structure
  • 005 Reminder Download the Kaggle Data.html
  • 006 Package Requirements Files
  • 007 Working with tox [Do NOT skip - important]
  • 008 Migrating from Tox 3 to Tox 4.html
  • 009 Troubleshooting Tox.html
  • 010 Package Config
  • 011 The Model Training Script & Pipeline
  • 012 Introduction to Pytest [Optional]
  • 013 Feature Engineering Code in the Package
  • 014 Making Predictions with the Package
  • 015 Building the Package
  • 016 Tooling
  • 017 Section Notes & Further Reading.html

  • 06 - Serving and Deploying the model via REST API
  • 001 Running the API Locally
  • 002 Understanding the Architecture of the API
  • 003 Introduction to FastAPI
  • 004 The API Endpoints
  • 005 Using Schemas in our API
  • 006 Logging in our Application
  • 007 The Uvicorn Web Server
  • 008 Introducing Railway App and Platform as a Service
  • 009 What Is a Platform as a Service (PaaS)
  • 010 Why Use Railway as Our PaaS
  • 011 Railway Links.html
  • 012 Deploying our ML Application to Railway - Hands On
  • 013 Limitations to Be Aware Of & Wrap Up
  • 014 Section Notes & Further Reading.html

  • 07 - Continuous Integration and Deployment Pipelines
  • 001 Introduction to CICD
  • 002 Setting up CircleCI
  • 003 CICD Automation Overview Part 1
  • 004 CICD Config Explanation
  • 005 CICD Automation Overview Part 2
  • 006 Using a Private Index Server (Gemfury)
  • 007 Hands on Run the CI Tests in your own Github Fork
  • 008 Hands on Run the CI Deploy on Your Own Github Fork
  • 009 Hands on Run the CI Publish on Your Own Github Fork
  • 010 Section Notes & Further Reading.html

  • 08 - Deploying The ML API With Containers
  • 001 Docker Refresher [Optional - For those unfamiliarrusty with Docker]
  • 001 docker-notes.pdf
  • 002 The Value of Docker and Containers
  • 003 Understanding The Container Deployment Process
  • 004 Docker Install Setup.html
  • 005 Hands On Containerising the App Locally
  • 006 Updating the CI Pipeline for a Container Deployment
  • 007 Section Notes & Further Reading.html

  • 09 - Differential Testing
  • 001 Attention !!! - This section still works with old version of code.html
  • 002 How to Use the Course Resources
  • 002 Section5.3a-Notes.pdf
  • 003 9.1 - Introduction
  • 004 9.2 - Setting up Differential Tests
  • 004 Section9.2-Notes.pdf
  • 005 9.3 - Differential Tests in CI (Part 1 of 2)
  • 006 9.4 - Differential Tests in CI (Part 2 of 2)
  • 006 Section9.4-Notes.pdf
  • 007 9.5 Wrap Up
  • 007 Section9.5-Notes.pdf

  • 10 - Deploying to IaaS (AWS ECS)
  • 001 Attention!!! We are currently updating this section.html
  • 002 12.1 - Introduction to AWS
  • 003 12.2 - AWS Costs and Caution
  • 003 Section12.2-Notes.pdf
  • 004 12.3a - Intro to AWS ECS
  • 004 Section12.3-Notes.pdf
  • 005 12.3b - Container Orchestration Options Kubernetes, ECS, Docker Swarm
  • 005 Section12.3-Notes.pdf
  • 006 12.4 - Create an AWS Account
  • 006 Section12.4-Notes.pdf
  • 007 12.5 - Setting Permissions with IAM
  • 007 Section12.5-Notes.pdf
  • 008 12.6 - Installing the AWS CLI
  • 008 Section12.6-Notes.pdf
  • 009 12.7 - Configuring the AWS CLI
  • 009 Section12.7-Notes.pdf
  • 010 12.8 - Intro the Elastic Container Registry (ECR)
  • 010 Section12.8-Notes.pdf
  • 011 12.9 - Uploading Images to the Elastic Container Registry (ECR)
  • 011 Section12.9-Notes.pdf
  • 012 12.10 - Creating the ECS Cluster with Fargate Launch Method
  • 012 Section12.10-Notes.pdf
  • 013 12.11 - Updating the Cluster Containers
  • 013 Section12.12-Notes.pdf
  • 014 12.12 - Tearing down the ECS Cluster
  • 014 Section12.13-Notes.pdf
  • 015 12.13 - Deploying to ECS via the CI pipeline
  • 015 Section12.14-Notes.pdf
  • 016 12.14 - Wrap Up
  • 016 Section12.15-Notes.pdf

  • 11 - A Deep Learning Model with Big Data
  • 001 Challenges of using Big Data in Machine Learning
  • 002 Installing Keras.html
  • 003 Download the data set.html
  • 004 Introduction to a Large Dataset - Plant Seedlings Images
  • 005 Building a CNN in the Research Environment
  • 005 CNN-Analysis-and-Model.zip
  • 006 CNNProdCode.zip
  • 006 Production Code for a CNN Learning Pipeline
  • 007 Reproducibility in Neural Networks
  • 008 Setting the Seed for Keras.html
  • 009 Seed for Neural Networks - Additional reading resources.html
  • 010 13.8 - Packaging the CNN
  • 010 Section13.8-Notes.pdf
  • 011 13.9 - Adding the CNN to the API
  • 011 Section13.9-Notes.pdf
  • 012 13.10 - Additional Considerations and Wrap Up
  • 012 Section13.10-Notes.pdf

  • 12 - Common Issues found during deployment
  • 001 Troubleshooting.html
  • 001 Troubleshooting.pdf

  • 13 - Appendix Former Section Serving the model via REST API
  • 001 Appendix - PLEASE READ.html
  • 002 7.1 - Introduction
  • 002 Section7.1-Notes.pdf
  • 003 Primer on Monorepos
  • 003 Section5.3c-Notes.pdf
  • 004 7.2 - Creating the API Skeleton
  • 004 Section7.2-Notes.pdf
  • 005 7.2b - Note On Flask.html
  • 006 7.3 - Adding Config and Logging
  • 006 Section7.3-Notes.pdf
  • 007 7.4 - Adding the Prediction Endpoint
  • 007 Section7.4-Notes.pdf
  • 008 7.5 - Adding a Version Endpoint
  • 008 Section7.5-Notes.pdf
  • 009 7.6 - API Schema Validation
  • 009 Section7.6-Notes.pdf
  • 010 7.7 - Wrap Up

  • 14 - Final Section
  • 001 Congratulations.html
  • 002 Bonus lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 19064
    حجم: 5185 مگابایت
    مدت زمان: 596 دقیقه
    تاریخ انتشار: ۲۰ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید