وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Databricks Certified Machine Learning Associate Exam Guide

سرفصل های دوره

Pass Databricks Certified Machine Learning Associate Certification with 10+ Hours of HD Quality Video & Lots of Hands-on


01 - Introduction
  • 001 Introduction
  • 002 Important - Udemy Tips & Review Update
  • 003 Course FAQs.html
  • 004 Course Materials.html
  • 004 Databricks-Machine-Learning-HTML-Files.zip
  • 004 bank-data.csv
  • 004 databricks-machine-learning.zip
  • 004 housing.csv
  • 004 windfarm-data.csv
  • 004 winequality-red.csv
  • 004 winequality-white.csv

  • 02 - Getting started with Databricks Machine Learning
  • 001 Introduction to Databricks Machine Learning
  • 002 Lab Databricks Workspace with Community Edition
  • 003 Lab Databricks Workspace with Azure Cloud
  • 004 Databricks User Interface Overview
  • 005 Azure Databricks Architecture Overview
  • 006 Resources Created by Azure Databricks Workspace

  • 03 - Databricks Runtime for Machine Learning
  • 001 Introduction to Databricks Runtime for Machine Learning
  • 002 Lab Creating Databricks ML Cluster
  • 003 Explore Cluster Features from UI

  • 04 - AutoML (Classification, Regression, Forecasting)
  • 001 Introduction to AutoML
  • 002 AutoML Regression Databricks UI Part - 1
  • 003 AutoML Regression Databricks UI Part - 2
  • 004 AutoML Regression Databricks UI Part - 3
  • 005 AutoML Regression Databricks Python API Part - 1
  • 006 AutoML Regression Databricks Python API Part - 2
  • 007 AutoML Classification Part - 1
  • 008 AutoML Classification Part - 2
  • 009 AutoML Forecasting Databricks UI Part - 1
  • 010 AutoML Forecasting Databricks UI Part - 2
  • 011 AutoML Forecasting Databricks Python API Part - 1
  • 012 AutoML Forecasting Databricks Python API Part - 2

  • 05 - Feature store
  • 001 Databricks Feature store Part -1
  • 002 Databricks Feature store Part -2

  • 06 - Managed MLflow
  • 001 Introduction to Mlflow
  • 002 Lab Mlflow Logging API Part - 1
  • 003 Lab Mlflow Logging API Part - 2
  • 004 Lab Mlflow Logging API Part - 3
  • 005 Lab ML End-to-End Example Part - 1
  • 006 Lab ML End-to-End Example Part - 2
  • 007 Lab ML End-to-End Example Part - 3
  • 008 Lab ML End-to-End Example Part - 4
  • 009 Lab ML End-to-End Example Part - 5
  • 010 MLFlow Model Registry Part - 1
  • 011 MLFlow Model Registry Part - 2
  • 012 MLFlow Model Registry Part - 3

  • 07 - Exploratory Data Analysis & Feature Engineering
  • 001 Introduction to Exploratory Data Analysis
  • 002 Exploratory Data Analysis Explore the Data Part 1
  • 003 Exploratory Data Analysis Explore the Data Part 2
  • 004 Exploratory Data Analysis Explore the Data Part 3
  • 005 Exploratory Data Analysis Data Visualization
  • 006 Exploratory Data Analysis Pandas Profiling
  • 007 Feature engineering Missing Value Imputation
  • 008 Feature engineering Outlier Removal
  • 009 Feature engineering Feature Creation
  • 010 Feature engineering Feature Scaling
  • 011 Feature engineering One-Hot-Encoding
  • 012 Feature engineering Feature Selection
  • 013 Feature engineering Feature Transformation
  • 014 Feature engineering Dimensionality Reduction

  • 08 - Hyperparameter Tuning with Hyperopt
  • 001 Hyperparameter Basics
  • 002 Introduction to Hyperparameter tuning with Hyperopt
  • 003 Hyperparameter Parallelization Loading the Dataset
  • 004 Hyperparameter Parallelization Single-Machine Hyperopt Workflow
  • 005 Hyperparameter Parallelization Distributed tuning using Apache Spark and MLflow
  • 006 Model Selection with Hyperopt & MLflow Part 1
  • 007 Model Selection with Hyperopt & MLflow Part 2
  • 008 Model Selection with Hyperopt & MLflow Part 3
  • 009 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 1
  • 010 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 2
  • 011 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 3
  • 012 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 4
  • 013 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 5
  • 014 Automated MLflow Tracking & Cross-Validation Part 1
  • 015 Automated MLflow Tracking & Cross-Validation Part 2
  • 016 Automated MLflow Tracking & Cross-Validation Part 3
  • 017 Automated MLflow Tracking & Cross-Validation Part 4

  • 09 - Spark ML Modeling APIs - Binary Classification
  • 001 Binary Classification - Loading Dataset
  • 002 Binary Classification - Data Preprocessing & Feature Engineering Part 1
  • 003 Binary Classification - Data Preprocessing & Feature Engineering Part 2
  • 004 Binary Classification - Logistic Regression Part 1
  • 005 Binary Classification - Logistic Regression Part 2
  • 006 Binary Classification - Decision Trees
  • 007 Binary Classification - Random Forest
  • 008 Binary Classification - Making Predictions

  • 10 - Spark ML Modeling APIs - Regression with GBT & MLlib Pipelines
  • 001 Regression with GBT & MLlib Pipelines - Data Preprocessing Part 1
  • 002 Regression with GBT & MLlib Pipelines - Data Preprocessing Part 2
  • 003 Regression with GBT & MLlib Pipelines - Train ML Pipeline Part 1
  • 004 Regression with GBT & MLlib Pipelines - Train ML Pipeline Part 2
  • 005 Regression with GBT & MLlib Pipelines - Predicting and Evaluating ML Model

  • 11 - Spark ML Modeling APIs - Decision Trees SFO Airport Survey
  • 001 Decision Trees SFO Airport Survey - Business Problem
  • 002 Decision Trees SFO Airport Survey - Loading Dataset
  • 003 Decision Trees SFO Airport Survey - Understanding Dataset
  • 004 Decision Trees SFO Airport Survey - Creating Model Part 1
  • 005 Decision Trees SFO Airport Survey - Creating Model Part 2
  • 006 Decision Trees SFO Airport Survey - Evaluating the Model
  • 007 Decision Trees SFO Airport Survey - Feature Importance

  • 12 - Pandas on Databricks & Accessing Data ADLS
  • 001 Introduction to Pandas on Databricks
  • 002 Store & Load Data with Pandas
  • 003 Working with Files on Databricks
  • 004 Accessing Data via Access Key
  • 005 Accessing Data via SAS Token
  • 006 Mounting ADLS to DBFS Part 1
  • 007 Mounting ADLS to DBFS Part 2
  • 008 Mount Storage Container Using f-strings
  • 009 Multi-hop Architecture (Medallion Architecture) Part 1
  • 010 Multi-hop Architecture (Medallion Architecture) Part 2

  • 13 - Pandas API on Spark
  • 001 Object Creation - Series
  • 002 Object Creation - Dataframe
  • 003 Object Creation - View Data
  • 004 Object Creation - Data Selection
  • 005 Applying Python Function with Pandas-on-Spark Object
  • 006 Grouping Data
  • 007 Plotting Data
  • 008 Type Conversion and Native Support for Pandas Objects
  • 009 Distributed Execution for Pandas Functions
  • 010 Using SQL in Pandas API on Spark
  • 011 Conversion from and to Pyspark Dataframe
  • 012 Checking Spark Execution Plans
  • 013 Caching Dataframes

  • 14 - Pandas Function APIs
  • 001 Introduction to Pandas Function APIs
  • 002 Pandas Function API - Grouped Map
  • 003 Pandas Function API - Map
  • 004 Pandas Function API - Cogrouped Map

  • 15 - Pandas User Defined Functions
  • 001 Introduction Pandas User Defined Functions
  • 002 Series to Series UDF
  • 003 Iterator of Series to Iterator of Series UDF
  • 004 Iterator of Multiple Series to Iterator of Series UDF
  • 005 Series to Scalar UDF

  • 16 - Thank You
  • 001 Congratulations & way forward
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 23917
    حجم: 6279 مگابایت
    مدت زمان: 965 دقیقه
    تاریخ انتشار: ۱۲ آذر ۱۴۰۲
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید