وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Databricks Certified Machine Learning Associate Exam Guide

سرفصل های دوره

Pass Databricks Certified Machine Learning Associate Certification with 10+ Hours of HD Quality Video & Lots of Hands-on


01 - Introduction
  • 001 Introduction
  • 002 Important - Udemy Tips & Review Update
  • 003 Course FAQs.html
  • 004 Course Materials.html
  • 004 Databricks-Machine-Learning-HTML-Files.zip
  • 004 bank-data.csv
  • 004 databricks-machine-learning.zip
  • 004 housing.csv
  • 004 windfarm-data.csv
  • 004 winequality-red.csv
  • 004 winequality-white.csv

  • 02 - Getting started with Databricks Machine Learning
  • 001 Introduction to Databricks Machine Learning
  • 002 Lab Databricks Workspace with Community Edition
  • 003 Lab Databricks Workspace with Azure Cloud
  • 004 Databricks User Interface Overview
  • 005 Azure Databricks Architecture Overview
  • 006 Resources Created by Azure Databricks Workspace

  • 03 - Databricks Runtime for Machine Learning
  • 001 Introduction to Databricks Runtime for Machine Learning
  • 002 Lab Creating Databricks ML Cluster
  • 003 Explore Cluster Features from UI

  • 04 - AutoML (Classification, Regression, Forecasting)
  • 001 Introduction to AutoML
  • 002 AutoML Regression Databricks UI Part - 1
  • 003 AutoML Regression Databricks UI Part - 2
  • 004 AutoML Regression Databricks UI Part - 3
  • 005 AutoML Regression Databricks Python API Part - 1
  • 006 AutoML Regression Databricks Python API Part - 2
  • 007 AutoML Classification Part - 1
  • 008 AutoML Classification Part - 2
  • 009 AutoML Forecasting Databricks UI Part - 1
  • 010 AutoML Forecasting Databricks UI Part - 2
  • 011 AutoML Forecasting Databricks Python API Part - 1
  • 012 AutoML Forecasting Databricks Python API Part - 2

  • 05 - Feature store
  • 001 Databricks Feature store Part -1
  • 002 Databricks Feature store Part -2

  • 06 - Managed MLflow
  • 001 Introduction to Mlflow
  • 002 Lab Mlflow Logging API Part - 1
  • 003 Lab Mlflow Logging API Part - 2
  • 004 Lab Mlflow Logging API Part - 3
  • 005 Lab ML End-to-End Example Part - 1
  • 006 Lab ML End-to-End Example Part - 2
  • 007 Lab ML End-to-End Example Part - 3
  • 008 Lab ML End-to-End Example Part - 4
  • 009 Lab ML End-to-End Example Part - 5
  • 010 MLFlow Model Registry Part - 1
  • 011 MLFlow Model Registry Part - 2
  • 012 MLFlow Model Registry Part - 3

  • 07 - Exploratory Data Analysis & Feature Engineering
  • 001 Introduction to Exploratory Data Analysis
  • 002 Exploratory Data Analysis Explore the Data Part 1
  • 003 Exploratory Data Analysis Explore the Data Part 2
  • 004 Exploratory Data Analysis Explore the Data Part 3
  • 005 Exploratory Data Analysis Data Visualization
  • 006 Exploratory Data Analysis Pandas Profiling
  • 007 Feature engineering Missing Value Imputation
  • 008 Feature engineering Outlier Removal
  • 009 Feature engineering Feature Creation
  • 010 Feature engineering Feature Scaling
  • 011 Feature engineering One-Hot-Encoding
  • 012 Feature engineering Feature Selection
  • 013 Feature engineering Feature Transformation
  • 014 Feature engineering Dimensionality Reduction

  • 08 - Hyperparameter Tuning with Hyperopt
  • 001 Hyperparameter Basics
  • 002 Introduction to Hyperparameter tuning with Hyperopt
  • 003 Hyperparameter Parallelization Loading the Dataset
  • 004 Hyperparameter Parallelization Single-Machine Hyperopt Workflow
  • 005 Hyperparameter Parallelization Distributed tuning using Apache Spark and MLflow
  • 006 Model Selection with Hyperopt & MLflow Part 1
  • 007 Model Selection with Hyperopt & MLflow Part 2
  • 008 Model Selection with Hyperopt & MLflow Part 3
  • 009 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 1
  • 010 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 2
  • 011 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 3
  • 012 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 4
  • 013 Tuning Distributed Training Algorithms (Hyperopt & Apache Spark MLlib) Part 5
  • 014 Automated MLflow Tracking & Cross-Validation Part 1
  • 015 Automated MLflow Tracking & Cross-Validation Part 2
  • 016 Automated MLflow Tracking & Cross-Validation Part 3
  • 017 Automated MLflow Tracking & Cross-Validation Part 4

  • 09 - Spark ML Modeling APIs - Binary Classification
  • 001 Binary Classification - Loading Dataset
  • 002 Binary Classification - Data Preprocessing & Feature Engineering Part 1
  • 003 Binary Classification - Data Preprocessing & Feature Engineering Part 2
  • 004 Binary Classification - Logistic Regression Part 1
  • 005 Binary Classification - Logistic Regression Part 2
  • 006 Binary Classification - Decision Trees
  • 007 Binary Classification - Random Forest
  • 008 Binary Classification - Making Predictions

  • 10 - Spark ML Modeling APIs - Regression with GBT & MLlib Pipelines
  • 001 Regression with GBT & MLlib Pipelines - Data Preprocessing Part 1
  • 002 Regression with GBT & MLlib Pipelines - Data Preprocessing Part 2
  • 003 Regression with GBT & MLlib Pipelines - Train ML Pipeline Part 1
  • 004 Regression with GBT & MLlib Pipelines - Train ML Pipeline Part 2
  • 005 Regression with GBT & MLlib Pipelines - Predicting and Evaluating ML Model

  • 11 - Spark ML Modeling APIs - Decision Trees SFO Airport Survey
  • 001 Decision Trees SFO Airport Survey - Business Problem
  • 002 Decision Trees SFO Airport Survey - Loading Dataset
  • 003 Decision Trees SFO Airport Survey - Understanding Dataset
  • 004 Decision Trees SFO Airport Survey - Creating Model Part 1
  • 005 Decision Trees SFO Airport Survey - Creating Model Part 2
  • 006 Decision Trees SFO Airport Survey - Evaluating the Model
  • 007 Decision Trees SFO Airport Survey - Feature Importance

  • 12 - Pandas on Databricks & Accessing Data ADLS
  • 001 Introduction to Pandas on Databricks
  • 002 Store & Load Data with Pandas
  • 003 Working with Files on Databricks
  • 004 Accessing Data via Access Key
  • 005 Accessing Data via SAS Token
  • 006 Mounting ADLS to DBFS Part 1
  • 007 Mounting ADLS to DBFS Part 2
  • 008 Mount Storage Container Using f-strings
  • 009 Multi-hop Architecture (Medallion Architecture) Part 1
  • 010 Multi-hop Architecture (Medallion Architecture) Part 2

  • 13 - Pandas API on Spark
  • 001 Object Creation - Series
  • 002 Object Creation - Dataframe
  • 003 Object Creation - View Data
  • 004 Object Creation - Data Selection
  • 005 Applying Python Function with Pandas-on-Spark Object
  • 006 Grouping Data
  • 007 Plotting Data
  • 008 Type Conversion and Native Support for Pandas Objects
  • 009 Distributed Execution for Pandas Functions
  • 010 Using SQL in Pandas API on Spark
  • 011 Conversion from and to Pyspark Dataframe
  • 012 Checking Spark Execution Plans
  • 013 Caching Dataframes

  • 14 - Pandas Function APIs
  • 001 Introduction to Pandas Function APIs
  • 002 Pandas Function API - Grouped Map
  • 003 Pandas Function API - Map
  • 004 Pandas Function API - Cogrouped Map

  • 15 - Pandas User Defined Functions
  • 001 Introduction Pandas User Defined Functions
  • 002 Series to Series UDF
  • 003 Iterator of Series to Iterator of Series UDF
  • 004 Iterator of Multiple Series to Iterator of Series UDF
  • 005 Series to Scalar UDF

  • 16 - Thank You
  • 001 Congratulations & way forward
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 23917
    حجم: 6279 مگابایت
    مدت زمان: 965 دقیقه
    تاریخ انتشار: ۱۲ آذر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید