وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Mining – Unsupervised Learning

سرفصل های دوره

Data Mining - Unsupervised Learning


1 - Introduction
  • 1 - Introduction about Tutor

  • 2 - About Analytics
  • 2 - Agenda and Stages Of Analytics
  • 3 - What is Diagnoistic Analytics
  • 4 - What is Predictive Analytics
  • 5 - What is Prescriptive Analytics
  • 6 - What is CRISPMLQ

  • 3 - Business Understanding Phase
  • 7 - Business Understanding Define Scope Of Application
  • 8 - Business Understanding Define Success Criteria
  • 9 - Business Understanding Use Cases

  • 4 - Data Understanding Phase Data Types
  • 10 - Agenda Data Understanding
  • 11 - Introduction to Data Understanding
  • 12 - Data Types Continuous Vs Discrete
  • 13 - Categorical Data Vs Count Data
  • 14 - Pratical Data Understanding using Realtime Examples
  • 15 - Scale of Measurement
  • 16 - Quantitave Vs Qualitative
  • 17 - Structure Vs Unstructured Data

  • 5 - Data Understanding Phase Data Collection
  • 18 - What is Data Collection
  • 19 - Understanding Primary Data Sources
  • 20 - Understanding Secondary Data Sources
  • 21 - Understanding Data Collection Using Survey
  • 22 - Understanding Data Collection Using DoE
  • 23 - Understanding possible errors in Data Collection Stage
  • 24 - Understanding Bias and Fairness

  • 6 - Understanding Basic Statistics
  • 25 - Introduction to CRISPMLQ Data preparation & Agenda
  • 26 - What is Probability
  • 27 - What is Random Variable
  • 28 - Understanding Probability and its ApplicationProbabiity Discussion

  • 7 - Data Preparation Phase Exploratory Data Analysis EDA
  • 29 - Understanding Normal Distribution
  • 30 - What is Inferential Statistics
  • 31 - Understanding Standard Normal Distribution & what is Z Scores
  • 32 - Understanding Measures of central tendency First moment business decession
  • 33 - Understanding Measures of Dispersion Second moment business decision
  • 34 - Understanding Box PlotDiff Bw Percentile and Quantile and Quartile
  • 35 - Understanding Graphical TechniquesQQPlot
  • 36 - Understanding about Bivariate Scatter Plot

  • 8 - Python Installation and Setup
  • 37 - Python Installation
  • 38 - Anakonda Installation
  • 39 - Understand about Anakonda Navigator Spyder & Python Libraries
  • 40 - Understanding about Jupyter and Google Colab

  • 9 - Data Preparation Phase Data Cleansing Type Casting
  • 41 - Recap Of Concepts
  • 42 - Understanding Data Cleansing Typecasting
  • 43 - Understanding Data Cleansing Typecasting Using Python

  • 10 - Data Preparation Phase Data Cleansing Handling Duplicates
  • 44 - Understanding Handling Duplicates
  • 45 - Understanding Handling Duplicates using Python

  • 11 - Data Preparation Phase Data CleansingOutlier Analysis Treatment
  • 46 - Understanding Outlier Analysis Treatment
  • 47 - Understanding Outlier Analysis Treatment using Python

  • 12 - Data Mining Clustering Segmentation using Python
  • 48 - Overview Of Clustering Segmentation
  • 49 - Distance Between Clusters
  • 50 - Hierarchical Clustering Process
  • 51 - Learning Clustering Using Python

  • 13 - Dimension Reduction Techniques
  • 52 - About Dimension Reduction & its Applications
  • 53 - Dimension Reduction Techniques

  • 14 - Network Analytics
  • 54 - Elements of a Network
  • 55 - About Google PageRank Algorithm
  • 56 - Network Based Similarity Metrics
  • 57 - Network related Properties
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 19055
    حجم: 3598 مگابایت
    مدت زمان: 643 دقیقه
    تاریخ انتشار: ۲۰ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید