وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Complete MLOps Bootcamp | From Zero to Hero in Python 2022

سرفصل های دوره

Advanced hands-on bootcamp of MLOps with MLFlow, Scikit-learn, CI/CD, Azure, FastAPI, Gradio, SHAP, Docker, DVC, Flask..


01 - Introduction to this course
  • 001 How to get the most out of the course
  • 002 Course material.html
  • 002 Course-material.7z
  • 002 MLOPs-Guide.pdf

  • 02 - Challenges and evolution of Machine Learning
  • 001 Introduction to Machine Learning
  • 002 Benefits of Machine Learning
  • 003 MLOps Fundamentals
  • 004 DevOps and DataOps Fundamentals

  • 03 - MLOps Fundaments
  • 001 Problems that MLOps solves
  • 002 MLOps Components
  • 003 MLOps Toolbox
  • 004 MLOps stages

  • 04 - Installation of tools and libraries
  • 001 How to install libraries and prepare the environment
  • 002 Jupyter Notebook Basics
  • 003 Installing Docker and Ubuntu

  • 05 - Productivization and structuring of ML projects
  • 001 Cookiecutter for managing the structure of the Machine Learning model
  • 002 Libraries and tools for project management from start to finish
  • 003 Poetry for dependency management
  • 004 Makefile for automated task execution
  • 005 Hydra to manage YAML configuration files
  • 006 Hydra applied to a Machine Learning project
  • 007 Automatically check and fix code before commit in Git
  • 008 Code review with Black and Flake8 in the pre-commit
  • 009 Code review with Isort and Iterrogate in the Pre-commit and Git integration
  • 010 Automatically generate documentation for ML project

  • 06 - MLOps Phase 1 Solution Design
  • 001 Volere design and implementation

  • 07 - MLOps Phase 2 Automating the ML Model Cycle
  • 001 AutoML Basics
  • 002 Building a model from start to finish with Pycaret
  • 003 EDA and Advanced Preprocessing with Pycaret
  • 004 Development of advanced models (XGBoost, CatBoost, LightGBM) with Pycaret)
  • 005 Production deployment with Pycaret

  • 08 - MLOps phase 2 Model versioning and registration with MLFlow
  • 001 Model registry and versioning with MLFlow
  • 002 Registering a Scikit-Learn model with MLFlow
  • 003 Registering a Pycaret model with MLFlow

  • 09 - Versioning dataset with DVC
  • 001 Introduction to DVC
  • 002 DVC commands and process
  • 003 Hands-on lab with DVC
  • 004 DVC Pipelines

  • 10 - Code repository with DagsHub, DVC, Git and MLFlow
  • 001 Introduction to DagsHub for the code repository
  • 002 EDA and data preprocessing
  • 003 Training and evaluation of the prototype of the ML model
  • 004 DagsHub account creation
  • 005 Creating the Python environment and dataset
  • 006 Deployment of the model in DagsHub
  • 007 Training and versioning the ML model
  • 008 Improving the model for a production environment
  • 009 Using DVC to version data and models
  • 010 Sending code, data and models to DagsHub
  • 011 Experimentation and registration of experiments in DagsHub
  • 012 Using DagsHub to analyze and compare experiments and models

  • 11 - Automated registration and versioning with Pycaret and DagsHub
  • 001 Pycaret and Dagshub integration
  • 002 Hands on laboratory of registering a model and dataset with Pycaret and DagsHub
  • 003 Hands-on Exercise.Development of a model with Pycaret and registration in MLFlow
  • 004 Solution. Development of a model with Pycaret and registration in MLFlow
  • 005 Hands-on exercise. Generating a repository with DagsHub
  • 006 Solution. Generating a repository with DagsHub
  • 007 Hands-on exercise. Data versioning with DVC
  • 008 Solution. Data versioning with DVC
  • 009 Hands-on exercise. Registering the model on a shared MLFlow server
  • 010 Solution. Registering the model on a shared MLFlow server

  • 12 - Model interpretability
  • 001 Basics of interpretability with SHAP
  • 002 Interpreting Scikit Learn models with SHAP
  • 003 Interpreting models with SHAP in Pycaret

  • 13 - Putting models into production
  • 001 Deploying Models in Production

  • 14 - MLOps phase 3 Model serving through APIs
  • 001 Fundamentals of APIs and FastAPI
  • 002 Functions, methods and parameters in FastAPI
  • 003 POST Method, Swagger and Pydantic in FastAPI
  • 004 API development for Scikit-learn model with FastAPI
  • 005 Automated API development with Pycaret

  • 15 - MLOps Phase 3 Model serving with Web Applications
  • 001 Serve the model through a Web Application
  • 002 Basic Gradio commands
  • 003 Development of a Gradio web application for Machine Learning
  • 004 Automated web application development with Pycaret
  • 005 Web application development with Streamlit
  • 006 Laboratory Web application development with Streamlit and Altair
  • 007 Laboratory Streamlit and Pycaret to develop a ML web service

  • 16 - Flask for application development
  • 001 Flask Fundamentals
  • 002 Building a project from start to finish with Flask
  • 003 Back-end development with Flask and front-end development with HTML and CSS

  • 17 - Docker and containers in Machine Learning
  • 001 Containers to isolate our applications
  • 002 Docker and Kubernetes Basics
  • 003 Generating a container for an ML API with Docker
  • 004 Docker to generate a container of a web application from Flask, HTML

  • 18 - BentoML for automated development of ML services
  • 001 Introduction to BentoML for generating ML services
  • 002 Generating an ML service with BentoML
  • 003 Putting the service into production with BentoML and Docker
  • 004 BentoML and MLflow integration and custom models
  • 005 GPU, preprocessing, data validation and multiple models in BentoML
  • 006 Different tools for developing ML services
  • 007 Exercise Using BentoML to develop a ML service
  • 008 Exercise Solution Using BentoML to develop a ML service

  • 19 - Deploy to Azure Cloud with Azure Container and Azure SDKs
  • 001 Introduction to Machine Learning in Cloud
  • 002 Putting the ML application into production in Azure Container with Docker
  • 003 SDKs and Azure Blob Storage for model deployment to Azure
  • 004 Model training and production deployment in Azure Blob Storage
  • 005 Download the Azure Blob Storage model and get predictions

  • 20 - Deployment of ML services on Heroku
  • 001 Heroku Fundamentals
  • 002 Hands-on Laboratory Deploying a ML Service on Heroku

  • 21 - Continuous integration and delivery (CICD) with GitHub Actions and CML
  • 001 Introduction to GitHub Actions
  • 002 GitHub Actions basic workflow
  • 003 GitHub Actions hands-on lab
  • 004 CI with Continuous Machine Learning (CML)
  • 005 CML Use Cases
  • 006 Hands-On Lab Applying GitHub Actions and CML to MLOps
  • 007 Hands-On Lab Tracking Performance with GitHub Actions and CML

  • 22 - Model and service monitoring with Evidently AI
  • 001 Introduction to monitoring ML models and services
  • 002 Data Drift, Concept Drift, and Model Performance
  • 003 ML model and service monitoring tools
  • 004 Evidently AI Fundamentals
  • 005 Drift and data quality, target drift and model quality
  • 006 Hands-on Lab Monitoring a model with Evidently AI
  • 007 Hands-on Laboratory Monitoring the model in production
  • 008 Hands-on Laboratory Identification of data drift in production

  • 23 - End-to-end MLOps Project
  • 001 MLOps end-to-end projectMLOps end-to-end project
  • 002 Development of the ML model
  • 003 Validation of the quality of the code, model and preprocessing
  • 004 Project versioning with MLFlow and DVC
  • 005 Shared repository with DagsHub and MLFlow
  • 006 API development with BentoML
  • 007 App development with Streamlit
  • 008 CI-CD Data validation workflow with GitHub Actions
  • 009 CICD Validating app functionality with GitHub Actions
  • 010 CICD Automated app deployment with GitHub Actions and Heroku
  • 179,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 40898
    حجم: 4008 مگابایت
    مدت زمان: 623 دقیقه
    تاریخ انتشار: ۲ آبان ۱۴۰۳
    طراحی سایت و خدمات سئو

    179,000 تومان
    افزودن به سبد خرید