وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
2

Calculus: Complete Course

سرفصل های دوره

From Beginner to Expert - Calculus Made Easy, Fun and Beautiful


1 - Introduction
  • 1 - Introduction
  • 2 - Whats in the Course

  • 2 - Introduction to Calculus
  • 3 - What is Calculus
  • 4 - Intuitive Limits
  • 5 - Terminology
  • 6 - The Derivative of a Polynomial at a Point
  • 7 - The Derivative of a Polynomial in General
  • 8 - The Derivative of xn
  • 9 - The Derivative of xn Proof
  • 10 - Negative and Fractional Powers

  • 3 - Differentiation Key Skills
  • 12 - Finding the Gradient at a Point
  • 13 - Tangents
  • 14 - Normals
  • 15 - Stationary Points
  • 16 - Increasing and Decreasing Functions
  • 17 - Second Derivatives
  • 18 - Optimisation Part 1
  • 19 - Optimisation Part 2

  • 4 - Integration Key Skills
  • 20 - Reverse Differentiation
  • 21 - Families of Functions
  • 22 - Finding Functions
  • 23 - Integral Notation
  • 24 - Integration as Area An Intuitive Approach
  • 25 - Integration as Area An Algebraic Proof
  • 26 - Areas Under Curves Part 1
  • 27 - Areas Under Curves Part 2
  • 28 - Areas Under the XAxis
  • 29 - Areas Between Functions

  • 5 - Applications of Calculus
  • 30 - Motion
  • 31 - Probability

  • 6 - Calculus with Chains of Polynomials
  • 32 - fxn Spotting a Pattern
  • 33 - Differentiating fxn An Algebraic Proof
  • 34 - The Chain Rule for fxn
  • 35 - Using the Chain Rule for fxn
  • 36 - Reverse Chain Rule for fxn
  • 37 - Reverse Chain Rule for fxn Definite Integrals

  • 7 - Calculus with Exponentials and Logarithms
  • 38 - Introduction to Exponentials
  • 39 - Introduction to Logarithms
  • 40 - THE Exponential Function
  • 41 - Differentiating Exponentials
  • 42 - Differentiating Chains of Exponentials Part 1
  • 43 - Differentiating Chains of Exponentials Part 2
  • 44 - The Natural Log and its Derivative
  • 45 - Differentiating Chains of Logarithms
  • 46 - Reverse Chain Rule for Exponentials
  • 47 - Reverse Chain Rule for Logarithms

  • 8 - Calculus with Trigonometric Functions
  • 48 - Radians
  • 49 - Small Angle Approximations
  • 50 - Differentiating Sinx and Cosx
  • 51 - OPTIONAL Proof of the Addition Formulae
  • 52 - Differentiating Chains of Sinx and Cosx
  • 53 - Reverse Chain Rule for Trig Functions
  • 54 - Integrating Powers of Sinx and Cosx

  • 9 - Advanced Techniques in Differentiation
  • 55 - The Chain Rule
  • 56 - The Product Rule An Intuitive Approach
  • 57 - Using the Product Rule
  • 58 - Algebraic Proof of the Product Rule
  • 59 - The Quotient Rule
  • 60 - Derivatives of All Six Trigonometric Functions
  • 61 - Implicit Differentiation
  • 62 - Stationary and Critical Points

  • 10 - Advanced Techniques is Integration
  • 63 - Integrating the Squares of All Trigonometric Functions
  • 64 - Integrating Products of Trigonometric Functions
  • 65 - Reverse Chain Rule
  • 66 - Introduction to Partial Fractions
  • 67 - Integrating with Partial Fractions
  • 68 - Integration by Parts Part 1
  • 69 - Integration by Parts Part 2
  • 70 - Integration by Parts Part 3
  • 71 - Integration by Substitution Part 1
  • 72 - Integration by Substitution Part 2
  • 73 - Integration by Substitution Part 3
  • 74 - Integration by Substitution Part 4
  • 75 - Area of a Circle Proof with Calculus
  • 76 - Reduction Formulae Part 1
  • 77 - Reduction Formulae Part 2

  • 11 - Advanced Applications in Differentiation
  • 78 - Connected Rates of Changes
  • 79 - Newtons Method
  • 80 - LHopitals Rules Part 1
  • 81 - LHopitals Rule Part 2
  • 82 - Maclaurin Series Part 1
  • 83 - Maclaurin Series Part 2
  • 84 - The Leibnitz Formula
  • 85 - Taylor Series

  • 12 - Advanced Applications in Integration
  • 86 - Volumes of Revolution Around the XAxis Part 1
  • 87 - Volumes of Revolution Around the XAxis Part 2
  • 88 - Volumes of Revolution Around the YAxis
  • 89 - Surface Areas of Revolution Part 1
  • 90 - Surface Areas of Revolution Part 2
  • 91 - Arc Lengths

  • 13 - Alternative Coordinate Systems
  • 92 - Parametric Equations Introduction
  • 93 - Converting Parametric Equations into Cartesian Equations
  • 94 - Differentiating Parametric Equations
  • 95 - Integrating Parametric Equations
  • 96 - Volumes of Revolution with Parametric Equations
  • 97 - Surface Areas and Arc Lengths of Parametric Equations
  • 98 - Polar Coordinates Introduction
  • 99 - Converting Between Polar and Cartesian Form
  • 100 - Differentiating Polar Curves
  • 101 - How to Integrate Polar Curves
  • 102 - Integrating Polar Curves

  • 14 - First Order Differential Equations
  • 103 - What is a Differential Equation
  • 104 - Separating Variables Part 1
  • 105 - Separating Variables Part 2
  • 106 - Separating Variables Modelling Part 1
  • 107 - Separating Variables Modelling Part 2
  • 108 - Integrating Factors

  • 15 - Second Order Differential Equations
  • 109 - Homogeneous Second Order Differential Equations Part 1
  • 110 - Homogeneous Second Order Differential Equations Part 2
  • 111 - Homogeneous Second Order Differential Equations Part 3
  • 112 - NonHomogeneous Second Order Differential Equations
  • 113 - Boundary Conditions
  • 114 - Coupled Differential Equations Part 1
  • 115 - Coupled Differential Equations Part 2
  • 116 - Reducible Differential Equations Part 1
  • 117 - Reducible Differential Equations Part 2
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 38653
    حجم: 7319 مگابایت
    مدت زمان: 1206 دقیقه
    تاریخ انتشار: ۲۸ تیر ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید