وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Bioinformatic; Learn Bulk RNA-Seq Data Analysis From Scratch

سرفصل های دوره

Best Bioinformatics course for Students, Academia and Industry Professionals to learn RNA-Seq Data Analysis From Zero


1. Course Introduction And Disclaimer
  • 1. Course Introduction, Disclaimer And Important Message to Our Learners

  • 2. Module-1 Basics of Molecular Biology (Optional)
  • 1. What is DNA
  • 2. Where is DNA Located in Our Cells
  • 3. What is Role of DNA
  • 4. Difference Between Eukaryotic and Prokaryotic Genes
  • 5. What is Inside of Gene (Coding Regions of DNA)
  • 6. Post Transcriptional Modifications

  • 3. Introduction of RNA-Seq
  • 1. Why There is Need of RNA-Seq Analysis
  • 2. Basic Workflow of RNA-Seq Analysis
  • 3. Next Generation Sequencing Workflow
  • 4. Basic File Obtained During RNA-Seq Analysis

  • 4. Practical Demonstration of RNA-Seq Reads To Feature Count Matrix In Linux
  • 1. Basic Workflow of RNA-Seq Data Analysis
  • 2. Installation of Linux in Your Windows (WSL)
  • 3.1 Commands to Install Necessary Programs In Linux Environment.pdf
  • 3. Installation of Necessary Programs In Linux Environment (Part-1)
  • 4. Installation of Necessary Programs In Linux Environment (Part-2)
  • 5. Installation of SAM Tools in Linux (Part-3)
  • 6. Downloading of Timmomatic Tool
  • 7.1 Command to Perform FASTQC Analysis.txt
  • 7. Quality Check of the Reads with FASTQC (Part-1)
  • 8.1 test udemy.zip
  • 8. Quality Check of the Reads with FASTQC (Part-2)
  • 9. Assignment 1 FASTQC Analysis of test udemy.fastq File.html
  • 10.1 Command to Perform Trimming Analysis.txt
  • 10. Use of Timmomatic Tool to Remove Poor Quality Reads
  • 11. Assignment-2 Trimming of Poor Quality Reads.html
  • 12.1 Command to Perform Alignment Using HISAT2.txt
  • 12. Use of HISAT2 for Alignment of Reads with Reference Genome
  • 13. Assignment-3 Performing Alignment of Reads with Reference Genome.html
  • 14. Downloading of GTF File to Build the Feature Count Matrix
  • 15.1 Command to Build The Feature Count Matrix.txt
  • 15. Building of Feature Count Matrix With Subread Tool
  • 16. Assignment-4 Building Feature Count Matrix.html
  • 17.1 script1.zip
  • 17.2 script2.zip
  • 17.3 script3.zip
  • 17.4 script4.zip
  • 17. How to Process Multipipe FastQ Files Using Bash Scripts
  • 18. Experimental Design of Airway Cell Line Study That will Use In DEG Analysis

  • 5. Basic Concepts of R and R-Studio
  • 1. Introduction of the Section
  • 2. Installation of R and R-Studio
  • 3. Setting Working Directory in R-Studio
  • 4. Basic Data Types Used in R
  • 5. Creating a Variable
  • 6. What is Package And Function in R
  • 7.1 R-Code to Bioconductor and DESeq2 in R-Studio.txt
  • 7. Brief Introduction of Bioconductor

  • 6. Differential Expression of Gene Analysis in R Using DESeq2 Package
  • 1. Installation of DESeq2 in R-Studio For DEGs Analysis
  • 2. What is CSV format And Saving MetaData File in CSV format
  • 3. Uploading of Feature Count Matrix and Meta Data in R-Studio
  • 4. Assignment-5 Uploading Feature Count Matrix and Meta Data in R-Studio.html
  • 5. Basic Quality Check of Feature Count Matrix and Meta Data
  • 6. Assignment-6 Basic Quality Check of Data.html
  • 7. Use of DESeq2 for DEG Analysis (Part-1)
  • 8. Assignment-7 Creating Design for Differentially Expressed Genes.html
  • 9. DESeq2 Concept of Leaky Expression Part-2)
  • 10. DESEq2 Removing Low Counts Reads Genes (Part-3)
  • 11. Assignment-8 Dropping Rows with Low Count.html
  • 12. DESeq2 Use of DESeq2 Function for DEG Analysis (Part-3)
  • 13. Assignment-9 Use of DESeq Function.html
  • 14. What is Size Factor Estimation in DESEq2
  • 15. What is dispersion Estimation in DESeq2
  • 16. Hypothesis testing in DESeq2 for DEG Analysis
  • 17. Concept of P-value and P-Adjusted values
  • 18. Getting Differentially Expressed Gene at Different Alpha Value
  • 19. Assignment-10 Getting DEGs at 0.05 Alpha Value.html
  • 20. Converting Gene IDs to Gene Name
  • 21. Assignment-11 Converting Genes IDs to Gene Name.html

  • 7. Quality Checking of RNA-Seq Data
  • 1. Basic Quality Check Parameters
  • 2. Basic Concepts of PCA Plot
  • 3. Building PCA Plot of RNA-Seq Data
  • 4. Assignment-12 Generation of PCA Plot.html
  • 5. Size Factor Estimation and Its Calculation
  • 6. Assignment-13 Estimating Size Factor.html
  • 7. Dispersion Estimates and Building of Dispresion Plot
  • 8. Assignment-14 Building Dispersion Plot.html

  • 8. Analysis of Gene Expression Data
  • 1. Basic Understanding of Tidyverse And ggplo2
  • 2. Installation of Tidyverse And ggplot2 and Sample Dataset
  • 3. Basic Functionality of Tidyverse Functions; Filter, Arrange, and Mutate
  • 4. Basic Functionality of ggplot2 to Build the Plots
  • 5. Building MA Plot
  • 6. Assignment-15 Building MA Plot for DEGs.html
  • 7. Getting Idea About Best Genes
  • 8. Assignment-16 Extraction of top 30 Best Genes.html
  • 9. Building Volcano Plot-Part1
  • 10. Building Volcano Plot -Part2
  • 11. Assignment-17 Volcano Plot of Data.html
  • 12. Building HeatMap of DEGs
  • 13. Assignment-18 HeatMap of Best 30 DEGs.html
  • 14. Simple Gene Ontology and Pathway Analysis of Genes
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 17987
    حجم: 2159 مگابایت
    مدت زمان: 281 دقیقه
    تاریخ انتشار: 28 مرداد 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید