وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
9

Bioinformatic; Learn Bulk RNA-Seq Data Analysis From Scratch

سرفصل های دوره

Best Bioinformatics course for Students, Academia and Industry Professionals to learn RNA-Seq Data Analysis From Zero


1. Course Introduction And Disclaimer
  • 1. Course Introduction, Disclaimer And Important Message to Our Learners

  • 2. Module-1 Basics of Molecular Biology (Optional)
  • 1. What is DNA
  • 2. Where is DNA Located in Our Cells
  • 3. What is Role of DNA
  • 4. Difference Between Eukaryotic and Prokaryotic Genes
  • 5. What is Inside of Gene (Coding Regions of DNA)
  • 6. Post Transcriptional Modifications

  • 3. Introduction of RNA-Seq
  • 1. Why There is Need of RNA-Seq Analysis
  • 2. Basic Workflow of RNA-Seq Analysis
  • 3. Next Generation Sequencing Workflow
  • 4. Basic File Obtained During RNA-Seq Analysis

  • 4. Practical Demonstration of RNA-Seq Reads To Feature Count Matrix In Linux
  • 1. Basic Workflow of RNA-Seq Data Analysis
  • 2. Installation of Linux in Your Windows (WSL)
  • 3.1 Commands to Install Necessary Programs In Linux Environment.pdf
  • 3. Installation of Necessary Programs In Linux Environment (Part-1)
  • 4. Installation of Necessary Programs In Linux Environment (Part-2)
  • 5. Installation of SAM Tools in Linux (Part-3)
  • 6. Downloading of Timmomatic Tool
  • 7.1 Command to Perform FASTQC Analysis.txt
  • 7. Quality Check of the Reads with FASTQC (Part-1)
  • 8.1 test udemy.zip
  • 8. Quality Check of the Reads with FASTQC (Part-2)
  • 9. Assignment 1 FASTQC Analysis of test udemy.fastq File.html
  • 10.1 Command to Perform Trimming Analysis.txt
  • 10. Use of Timmomatic Tool to Remove Poor Quality Reads
  • 11. Assignment-2 Trimming of Poor Quality Reads.html
  • 12.1 Command to Perform Alignment Using HISAT2.txt
  • 12. Use of HISAT2 for Alignment of Reads with Reference Genome
  • 13. Assignment-3 Performing Alignment of Reads with Reference Genome.html
  • 14. Downloading of GTF File to Build the Feature Count Matrix
  • 15.1 Command to Build The Feature Count Matrix.txt
  • 15. Building of Feature Count Matrix With Subread Tool
  • 16. Assignment-4 Building Feature Count Matrix.html
  • 17.1 script1.zip
  • 17.2 script2.zip
  • 17.3 script3.zip
  • 17.4 script4.zip
  • 17. How to Process Multipipe FastQ Files Using Bash Scripts
  • 18. Experimental Design of Airway Cell Line Study That will Use In DEG Analysis

  • 5. Basic Concepts of R and R-Studio
  • 1. Introduction of the Section
  • 2. Installation of R and R-Studio
  • 3. Setting Working Directory in R-Studio
  • 4. Basic Data Types Used in R
  • 5. Creating a Variable
  • 6. What is Package And Function in R
  • 7.1 R-Code to Bioconductor and DESeq2 in R-Studio.txt
  • 7. Brief Introduction of Bioconductor

  • 6. Differential Expression of Gene Analysis in R Using DESeq2 Package
  • 1. Installation of DESeq2 in R-Studio For DEGs Analysis
  • 2. What is CSV format And Saving MetaData File in CSV format
  • 3. Uploading of Feature Count Matrix and Meta Data in R-Studio
  • 4. Assignment-5 Uploading Feature Count Matrix and Meta Data in R-Studio.html
  • 5. Basic Quality Check of Feature Count Matrix and Meta Data
  • 6. Assignment-6 Basic Quality Check of Data.html
  • 7. Use of DESeq2 for DEG Analysis (Part-1)
  • 8. Assignment-7 Creating Design for Differentially Expressed Genes.html
  • 9. DESeq2 Concept of Leaky Expression Part-2)
  • 10. DESEq2 Removing Low Counts Reads Genes (Part-3)
  • 11. Assignment-8 Dropping Rows with Low Count.html
  • 12. DESeq2 Use of DESeq2 Function for DEG Analysis (Part-3)
  • 13. Assignment-9 Use of DESeq Function.html
  • 14. What is Size Factor Estimation in DESEq2
  • 15. What is dispersion Estimation in DESeq2
  • 16. Hypothesis testing in DESeq2 for DEG Analysis
  • 17. Concept of P-value and P-Adjusted values
  • 18. Getting Differentially Expressed Gene at Different Alpha Value
  • 19. Assignment-10 Getting DEGs at 0.05 Alpha Value.html
  • 20. Converting Gene IDs to Gene Name
  • 21. Assignment-11 Converting Genes IDs to Gene Name.html

  • 7. Quality Checking of RNA-Seq Data
  • 1. Basic Quality Check Parameters
  • 2. Basic Concepts of PCA Plot
  • 3. Building PCA Plot of RNA-Seq Data
  • 4. Assignment-12 Generation of PCA Plot.html
  • 5. Size Factor Estimation and Its Calculation
  • 6. Assignment-13 Estimating Size Factor.html
  • 7. Dispersion Estimates and Building of Dispresion Plot
  • 8. Assignment-14 Building Dispersion Plot.html

  • 8. Analysis of Gene Expression Data
  • 1. Basic Understanding of Tidyverse And ggplo2
  • 2. Installation of Tidyverse And ggplot2 and Sample Dataset
  • 3. Basic Functionality of Tidyverse Functions; Filter, Arrange, and Mutate
  • 4. Basic Functionality of ggplot2 to Build the Plots
  • 5. Building MA Plot
  • 6. Assignment-15 Building MA Plot for DEGs.html
  • 7. Getting Idea About Best Genes
  • 8. Assignment-16 Extraction of top 30 Best Genes.html
  • 9. Building Volcano Plot-Part1
  • 10. Building Volcano Plot -Part2
  • 11. Assignment-17 Volcano Plot of Data.html
  • 12. Building HeatMap of DEGs
  • 13. Assignment-18 HeatMap of Best 30 DEGs.html
  • 14. Simple Gene Ontology and Pathway Analysis of Genes
  • 189,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 17987
    حجم: 2159 مگابایت
    مدت زمان: 281 دقیقه
    تاریخ انتشار: ۲۸ مرداد ۱۴۰۲
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    189,000 تومان
    افزودن به سبد خرید