وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Bayesian Optimization in Action, Video Edition

سرفصل های دوره
  • 001. Chapter 1. Introduction to Bayesian optimization
  • 002. Chapter 1. Introducing Bayesian optimization
  • 003. Chapter 1. What will you learn in this book
  • 004. Chapter 1. Summary
  • 005. Part 1. Modeling with Gaussian processes
  • 006. Chapter 2. Gaussian processes as distributions over functions
  • 007. Chapter 2. Modeling correlations with multivariate Gaussian distributions and Bayesian updates
  • 008. Chapter 2. Going from a finite to an infinite Gaussian
  • 009. Chapter 2. Implementing GPs in Python
  • 010. Chapter 2. Exercise
  • 011. Chapter 2. Summary
  • 012. Chapter 3. Customizing a Gaussian process with the mean and covariance functions
  • 013. Chapter 3. Incorporating what you already know into a GP
  • 014. Chapter 3. Defining the functional behavior with the mean function
  • 015. Chapter 3. Defining variability and smoothness with the covariance function
  • 016. Chapter 3. Exercise
  • 017. Chapter 3. Summary
  • 018. Part 2. Making decisions with Bayesian optimization
  • 019. Chapter 4. Refining the best result with improvement-based policies
  • 020. Chapter 4. Finding improvement in BayesOpt
  • 021. Chapter 4. Optimizing the expected value of improvement
  • 022. Chapter 4. Exercises
  • 023. Chapter 4. Summary
  • 024. Chapter 5. Exploring the search space with bandit-style policies
  • 025. Chapter 5. Being optimistic under uncertainty with the Upper Confidence Bound policy
  • 026. Chapter 5. Smart sampling with the Thompson sampling policy
  • 027. Chapter 5. Exercises
  • 028. Chapter 5. Summary
  • 029. Chapter 6. Using information theory with entropy-based policies
  • 030. Chapter 6. Entropy search in BayesOpt
  • 031. Chapter 6. Exercises
  • 032. Chapter 6. Summary
  • 033. Part 3. Extending Bayesian optimization to specialized settings
  • 034. Chapter 7. Maximizing throughput with batch optimization
  • 035. Chapter 7. Computing the improvement and upper confidence bound of a batch of points
  • 036. Chapter 7. Exercise 1 Extending TS to the batch setting via resampling
  • 037. Chapter 7. Computing the value of a batch of points using information theory
  • 038. Chapter 7. Exercise 2 Optimizing airplane designs
  • 039. Chapter 7. Summary
  • 040. Chapter 8. Satisfying extra constraints with constrained optimization
  • 041. Chapter 8. Constraint-aware decision-making in BayesOpt
  • 042. Chapter 8. Exercise 1 Manual computation of constrained EI
  • 043. Chapter 8. Implementing constrained EI with BoTorch
  • 044. Chapter 8. Exercise 2 Constrained optimization of airplane design
  • 045. Chapter 8. Summary
  • 046. Chapter 9. Balancing utility and cost with multifidelity optimization
  • 047. Chapter 9. Multifidelity modeling with GPs
  • 048. Chapter 9. Balancing information and cost in multifidelity optimization
  • 049. Chapter 9. Measuring performance in multifidelity optimization
  • 050. Chapter 9. Exercise 1 Visualizing average performance in multifidelity optimization
  • 051. Chapter 9. Exercise 2 Multifidelity optimization with multiple low-fidelity approximations
  • 052. Chapter 9. Summary
  • 053. Chapter 10. Learning from pairwise comparisons with preference optimization
  • 054. Chapter 10. Formulating a preference optimization problem and formatting pairwise comparison data
  • 055. Chapter 10. Training a preference-based GP
  • 056. Chapter 10. Preference optimization by playing king of the hill
  • 057. Chapter 10. Summary
  • 058. Chapter 11. Optimizing multiple objectives at the same time
  • 059. Chapter 11. Finding the boundary of the most optimal data points
  • 060. Chapter 11. Seeking to improve the optimal data boundary
  • 061. Chapter 11. Exercise Multiobjective optimization of airplane design
  • 062. Chapter 11. Summary
  • 063. Part 4. Special Gaussian process models
  • 064. Chapter 12. Scaling Gaussian processes to large datasets
  • 065. Chapter 12. Automatically choosing representative points from a large dataset
  • 066. Chapter 12. Optimizing better by accounting for the geometry of the loss surface
  • 067. Chapter 12. Exercise
  • 068. Chapter 12. Summary
  • 069. Chapter 13. Combining Gaussian processes with neural networks
  • 070. Chapter 13. Capturing similarity within structured data
  • 071. Chapter 13. Using neural networks to process complex structured data
  • 072. Chapter 13. Summary
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38102
    حجم: 13049 مگابایت
    مدت زمان: 716 دقیقه
    تاریخ انتشار: ۹ تیر ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید