وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Astronomy Image Colorization using Machine Learning (GANs)

سرفصل های دوره

Colorize Black & White Astronomical Images Using Python, PyTorch, and FastAPI


1 - Introduction to Course and Generative Adversarial Networks
  • 1 -What youre going to build
  • 2 -Course Introduction
  • 3 -Prerequisites
  • 4 -Intro to Module 1
  • 5 -Generative Models
  • 6 -Example of GANs
  • 7 -Introduction to GANs
  • 8 -GAN Architecture
  • 9 -Loss Function
  • 10 -Balanced Training
  • 11 -Optimizers
  • 12 -Problem with GANs
  • 13 -Module 1 Conclusion

  • 2 - Generate Galaxies using GAN
  • 1 -Module 2 Introduction
  • 2 -Problem Statement
  • 3 -Setting up Kaggle Notebook
  • 4 -Importing Libraries
  • 5 -Load and Analyse the Image
  • 6 -Function to preprocess the Image
  • 7 -Create Dataset Pipeline
  • 8 -Visualise the Data
  • 9 -Build the Generator Model
  • 10 -Build the Discriminator Model
  • 11 -Define Losses and Optimizers
  • 12 -Setup Checkpoints
  • 13 -Function to generate and save images
  • 14 -Function to define a training step
  • 15 -Function to Train the GAN model
  • 17 -Discuss Final Results
  • 18 -Module 2 Conclusion

  • 3 - WGAN with Losses and Gradient Penalty
  • 1 -Module 3 Intro
  • 2 -Quick Recap on GAN
  • 3 -Introduction to Wasserstein GAN (WGAN)
  • 4 -Lipschitz Constraint
  • 5 -Loss Functions for WGAN
  • 6 -WGAN Algorithm
  • 7 -WGAN-GP Algorithm
  • 8 -Understanding WGAN-GP
  • 9 -Module 3 Conclusion

  • 4 - Generating Galaxies using WGAN-GP
  • 1 -Module 4 Introduction
  • 2 -Importing Dependencies
  • 3 -Setting Memory Growth for each GPU
  • 4 -Project Setup
  • 5 -Dataset Preparation
  • 6 -Building the Generator and the Critic
  • 7 -Learning Rate Setup
  • 8 -Building the Checkpoints
  • 9 -Function to generate and save images
  • 10 -Build the training step for the Generator and the Critic
  • 11 -Training WGAN-GP
  • 12 -Compare the real data with the generated data
  • 13 -Module 4 Conclusion

  • 5 - Image to Image Translation GANs
  • 1 -Module 5 Introduction
  • 2 -Block Diagram of Pix2Pix
  • 3 -UNET Architecture for Generator
  • 4 -PatchGAN for Discriminator
  • 5 -Training of Generator
  • 6 -Training of Discriminator
  • 7 -Quick Paper Walkthrough
  • 8 -Module 5 Conclusion

  • 6 - Colorizing black and white Astronomical Images
  • 1 -Module 6 Introduction
  • 2 -PyTorch for Final Project
  • 3 -Adding Dataset to the Notebook
  • 4 -Unzip the Training Images
  • 5 -Importing Libraries and Modules
  • 6 -Visualizing Images in the Dataset
  • 7 -Understanding LAB color space
  • 8 -DataLoader for Training and Validation Sets
  • 9 -Revisiting UNET
  • 11 -Highly Modular UNET for Generator Implementation
  • 12 -70x70 PatchGAN for Discriminator Implementation
  • 13 -Binary Cross Entropy Loss for Generator and Discriminator
  • 14 -Initializing Weights and Model with those Weights
  • 15 -Main Model Definition for Training
  • 16 -Define Utility Functions for Training
  • 17 -Training Outputs
  • 18 -Human Eye Validation
  • 19 -Calculating PSNR and SSIM on Input Data
  • 20 -Final Outputs and Conclusion
  • 21 -Module 6 Conclusion

  • 7 - Introduction to FastAPI and Streamlit
  • 1 -Module 7 Introduction
  • 2 -Whats an API
  • 3 -RESTful API
  • 4 -FastAPI Introduction
  • 5 -Setting up the Demo for FastAPI
  • 6 -Get Method - App Working
  • 7 -Post Method - Create Mission
  • 8 -Get Method - Retrieve Mission(s)
  • 9 -Streamlit Frontend
  • 10 -Module 7 Conclusion

  • 8 - Image Colorization App
  • 1 -Module 8 Introduction
  • 2 -Download the Project file
  • 3 -Setup the Project
  • 4 -Experience the Webapp
  • 5 -Model file model.py
  • 6 -Main app file
  • 7 -frontend.py using chatGPT
  • 8 -Module 8 Conclusion
  • 9 -Course Conclusion
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 44215
    حجم: 7495 مگابایت
    مدت زمان: 826 دقیقه
    تاریخ انتشار: ۲۰ اردیبهشت ۱۴۰۴
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید