وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Astronomy Image Colorization using Machine Learning (GANs)

سرفصل های دوره

Colorize Black & White Astronomical Images Using Python, PyTorch, and FastAPI


1 - Introduction to Course and Generative Adversarial Networks
  • 1 -What youre going to build
  • 2 -Course Introduction
  • 3 -Prerequisites
  • 4 -Intro to Module 1
  • 5 -Generative Models
  • 6 -Example of GANs
  • 7 -Introduction to GANs
  • 8 -GAN Architecture
  • 9 -Loss Function
  • 10 -Balanced Training
  • 11 -Optimizers
  • 12 -Problem with GANs
  • 13 -Module 1 Conclusion

  • 2 - Generate Galaxies using GAN
  • 1 -Module 2 Introduction
  • 2 -Problem Statement
  • 3 -Setting up Kaggle Notebook
  • 4 -Importing Libraries
  • 5 -Load and Analyse the Image
  • 6 -Function to preprocess the Image
  • 7 -Create Dataset Pipeline
  • 8 -Visualise the Data
  • 9 -Build the Generator Model
  • 10 -Build the Discriminator Model
  • 11 -Define Losses and Optimizers
  • 12 -Setup Checkpoints
  • 13 -Function to generate and save images
  • 14 -Function to define a training step
  • 15 -Function to Train the GAN model
  • 17 -Discuss Final Results
  • 18 -Module 2 Conclusion

  • 3 - WGAN with Losses and Gradient Penalty
  • 1 -Module 3 Intro
  • 2 -Quick Recap on GAN
  • 3 -Introduction to Wasserstein GAN (WGAN)
  • 4 -Lipschitz Constraint
  • 5 -Loss Functions for WGAN
  • 6 -WGAN Algorithm
  • 7 -WGAN-GP Algorithm
  • 8 -Understanding WGAN-GP
  • 9 -Module 3 Conclusion

  • 4 - Generating Galaxies using WGAN-GP
  • 1 -Module 4 Introduction
  • 2 -Importing Dependencies
  • 3 -Setting Memory Growth for each GPU
  • 4 -Project Setup
  • 5 -Dataset Preparation
  • 6 -Building the Generator and the Critic
  • 7 -Learning Rate Setup
  • 8 -Building the Checkpoints
  • 9 -Function to generate and save images
  • 10 -Build the training step for the Generator and the Critic
  • 11 -Training WGAN-GP
  • 12 -Compare the real data with the generated data
  • 13 -Module 4 Conclusion

  • 5 - Image to Image Translation GANs
  • 1 -Module 5 Introduction
  • 2 -Block Diagram of Pix2Pix
  • 3 -UNET Architecture for Generator
  • 4 -PatchGAN for Discriminator
  • 5 -Training of Generator
  • 6 -Training of Discriminator
  • 7 -Quick Paper Walkthrough
  • 8 -Module 5 Conclusion

  • 6 - Colorizing black and white Astronomical Images
  • 1 -Module 6 Introduction
  • 2 -PyTorch for Final Project
  • 3 -Adding Dataset to the Notebook
  • 4 -Unzip the Training Images
  • 5 -Importing Libraries and Modules
  • 6 -Visualizing Images in the Dataset
  • 7 -Understanding LAB color space
  • 8 -DataLoader for Training and Validation Sets
  • 9 -Revisiting UNET
  • 11 -Highly Modular UNET for Generator Implementation
  • 12 -70x70 PatchGAN for Discriminator Implementation
  • 13 -Binary Cross Entropy Loss for Generator and Discriminator
  • 14 -Initializing Weights and Model with those Weights
  • 15 -Main Model Definition for Training
  • 16 -Define Utility Functions for Training
  • 17 -Training Outputs
  • 18 -Human Eye Validation
  • 19 -Calculating PSNR and SSIM on Input Data
  • 20 -Final Outputs and Conclusion
  • 21 -Module 6 Conclusion

  • 7 - Introduction to FastAPI and Streamlit
  • 1 -Module 7 Introduction
  • 2 -Whats an API
  • 3 -RESTful API
  • 4 -FastAPI Introduction
  • 5 -Setting up the Demo for FastAPI
  • 6 -Get Method - App Working
  • 7 -Post Method - Create Mission
  • 8 -Get Method - Retrieve Mission(s)
  • 9 -Streamlit Frontend
  • 10 -Module 7 Conclusion

  • 8 - Image Colorization App
  • 1 -Module 8 Introduction
  • 2 -Download the Project file
  • 3 -Setup the Project
  • 4 -Experience the Webapp
  • 5 -Model file model.py
  • 6 -Main app file
  • 7 -frontend.py using chatGPT
  • 8 -Module 8 Conclusion
  • 9 -Course Conclusion
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 44215
    حجم: 7495 مگابایت
    مدت زمان: 826 دقیقه
    تاریخ انتشار: ۲۰ اردیبهشت ۱۴۰۴
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید