وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Advanced Data Science Techniques in SPSS

سرفصل های دوره

Hone your SPSS skills to perfection - grasp the most high level data analysis methods available in the SPSS program.


1. Getting Started
  • 1. Introduction

  • 2. Advanced Linear Regression Techniques
  • 1. Introduction to Stepwise Regression
  • 2. Our Practical Example
  • 3. Executing the Stepwise Regression Method
  • 4. Interpreting the Results of the Stepwise Method
  • 5. Executing the Forward Selection Regression
  • 6. Interpreting the Results of the Forward Selection Method
  • 7. Executing the Backward Selection Regression
  • 8. Interpreting the Results of the Backward Selection Method
  • 9. Comparing Nested Models Using the Remove Method
  • 10. Executing the Regression Analysis with the Remove Method
  • 11. Interpreting the Results of the Remove Method

  • 3. Nonlinear Regression Analysis
  • 1. Types of Nonlinear Functions
  • 2. An Important Classification of the Nonlinear Relationships
  • 3. Performing a Quadratic Regression in SPSS (1)
  • 4. Performing a Quadratic Regression in SPSS (2)
  • 5. Performing a Cubic Regression in SPSS (1)
  • 6. Performing a Cubic Regression in SPSS (2)
  • 7. Performing an Inverse Regression in SPSS (1)
  • 8. Performing an Inverse Regression in SPSS (2)
  • 9. Performing a Nonlinear Regression With an Exponential Relationship
  • 10. Performing a Nonlinear Regression With a Logistic Relationship

  • 4. K Nearest Neighbor in SPSS
  • 1. Introduction to K Nearest Neighbor (KNN)
  • 2. Selecting the Optimal Number of Neighbors
  • 3. Our Practical Example
  • 4. Performing the KNN technique
  • 5. Interpreting the results of the KNN analysis
  • 6. Finding the Optimal Number of Neighbors with Cross-Validation
  • 7. Interpreting the Cross-Validation Results
  • 8. Using the KNN Model for Future Predictions

  • 5. Introduction to Decision Trees
  • 1. What Are Decision Trees
  • 2. Binary Trees (CART)
  • 3. Non-Binary Trees (CHAID)
  • 4. Advantages and Disadvantages of Decision Trees

  • 6. Growing Binary Trees (CART) in SPSS
  • 1. Growing a Binary Regression Tree (CART)
  • 2. Intepreting a Binary Regression Tree (1)
  • 3. Intepreting a Binary Regression Tree (2)
  • 4. Computing the R Squared
  • 5. Growing a CART Regression Tree with Cross-Validation
  • 6. Interpreting the Cross-Validation Results for a Regression Tree
  • 7. Growing a CART Classification Tree in SPSS
  • 8. Interpreting the CART Classification Tree
  • 9. Growing a CART Classification Tree with Cross-Validation
  • 10. Interpreting the Cross-Validation Results for a Classification Tree
  • 11. Using Binary Trees for Future Predictions

  • 7. Growing Non-Binary Trees (CHAID) in SPSS
  • 1. Building a CHAID Regression Tree
  • 2. Interpreting a CHAID Regression Tree
  • 3. Growing a CHAID Regression Tree with Cross-Validation
  • 4. Building a CHAID Classification Tree
  • 5. Interpreting a CHAID Classification Tree
  • 6. Growing a CHAID Classification Tree with Cross-Validation
  • 7. Using Non-Binary Trees for Future Predictions

  • 8. Introduction to Neural Networks
  • 1. The Architecture of an Artificial Neural Network
  • 2. What Happens Inside of a Neuron
  • 3. Activation Functions
  • 4. Neural Network Learning Process

  • 9. Training a Multilayer Perceptron (MLP) in SPSS
  • 1. Building a Multilayer Perceptron
  • 2. Interpreting the Multilayer Perceptron
  • 3. Interpreting the ROC Curve
  • 4. Using the Multilayer Perceptron for Future Predictions

  • 10. Training a Radial Basis Function (RBF) Neural Network in SPSS
  • 1. Building an RBF Neural Network
  • 2. Interpreting the RBF Network
  • 3. Using the RBF Network for Future Predictions

  • 11. Two-Step Cluster Analysis
  • 1. What is Two-Step Clustering
  • 2. Executing the Two-Step Cluster Analysis
  • 3. Interpreting the Output of the Two-Step Cluster Analysis (1)
  • 4. Interpreting the Output of the Two-Step Cluster Analysis (2)
  • 5. Examining the Evaluation Variables
  • 6. Using Your Clustering Model for Future Predictions

  • 12. Survival Analysis
  • 1. What Is the Survival Analysis
  • 2. Introduction to the Kaplan-Meier Method
  • 3. Introduction to the Cox Regression
  • 4. Our Practical Example
  • 5. Executing the Kaplan-Meier Procedure
  • 6. Interpreting the Results of the Kaplan-Meier Method (1)
  • 7. Interpreting the Results of the Kaplan-Meier Method (2)
  • 8. Executing the Cox Regression
  • 9. Interpreting the Cox Regression

  • 13. Practical Exercises
  • 1.1 Practice 01 linear regression.pdf
  • 1. Practical Exercises for the Linear Regression.html
  • 2.1 Practice 02 nonlinear regression.pdf
  • 2. Practical Exercises for the Nonlinear Regression.html
  • 3.1 Practice 03 KNN.pdf
  • 3. Practical Exercises for the KNN Method.html
  • 4.1 Practice 04 regression trees.pdf
  • 4. Practical Exercises for the Regression Trees.html
  • 5.1 Practice 05 classification trees.pdf
  • 5. Practical Exercises for the Classification Trees.html
  • 6.1 Practice 06 neural networks.pdf
  • 6. Practical Exercises for the Neural Networks.html
  • 7.1 Practice 07 cluster.pdf
  • 7. Practical Exercises for the Cluster Analysis.html
  • 8.1 Practice 08 survival.pdf
  • 8. Practical Exercises for the Survival Analysis.html

  • 14. Download Your Resources Here
  • 1. Download Links.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 20353
    حجم: 910 مگابایت
    مدت زمان: 402 دقیقه
    تاریخ انتشار: ۱۵ مهر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید