وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

The 2024 Pandas Bootcamp: Advanced Data Analysis with Python

سرفصل های دوره

Master Pandas and Python with real-world datasets and 200+ hands-on exercises! Go from beginner to expert Data Analyst!


1 - Introduction
  • 1 -Welcome to the Course!
  • 2 - IMPORTANT Example Files (and Exercise Solutions!).html

  • 2 - Python Crash Course
  • 1 -What Is Programming
  • 1 - Note to Students PLEASE READ.html
  • 2 -The Programming Environment
  • 3 -Values and Types
  • 3 - The Programming Environment - Exercises.html
  • 4 -Functions
  • 5 -Expressions
  • 6 -Expressions in Colab
  • 7 -Variables
  • 7 - Expressions in Colab - Exercises.html
  • 8 -Naming Variables
  • 8 - Variables - Exercises.html
  • 9 -Errors
  • 10 -Comments
  • 11 -Text Cells
  • 12 -Colab Tips and Pitfalls
  • 12 - Text Cells - Exercises.html
  • 13 -Objects, Attributes, and Methods
  • 14 -Modules and Libraries
  • 14 -STEM Salaries.csv
  • 15 -Lists
  • 16 -Tuples
  • 17 -Dictionaries
  • 18 - Data Structures - Exercises.html

  • 3 - Working with DataFrames
  • 1 -Introducing DataFrames
  • 1 - IMPORTANT DOWNLOAD EXAMPLE DATASETS.html
  • 2 -Introducing the Example Datasets
  • 2 - Introducing DataFrames - Exercises.html
  • 3 -DataFrames and the read csv Method - Part I
  • 4 -DataFrames and the read csv Method - Part II
  • 5 -Providing DataFrame Column Names
  • 5 - DataFrames and the read csv Method - Exercises.html
  • 6 -Inspecting DataFrames
  • 6 - Providing DataFrame Column Names - Exercises.html
  • 7 -Data Types and the info Method
  • 7 - Inspecting DataFrames - Exercises.html
  • 8 -Renaming Columns
  • 8 - Data Types and the info Method - Exercises.html
  • 9 -Dropping Columns
  • 9 - Renaming Columns - Exercises.html
  • 10 -Selecting Columns
  • 10 - Dropping Columns - Exercises.html
  • 11 - Selecting Columns - Exercises.html

  • 4 - Working with Series
  • 1 -Series 101
  • 2 -Converting Series with to numeric
  • 2 - Series 101 - Exercises.html
  • 3 -Converting Series with to datetime
  • 3 - Converting Series with to numeric - Exercises.html
  • 4 -Adding Columns (Series) to DataFrames
  • 4 - Converting Series with to datetime - Exercises.html
  • 5 -Creating Derived Columns
  • 5 - Adding Columns (Series) to DataFrames - Exercises.html
  • 6 -The assign Method
  • 6 - Creating Derived Columns - Exercises.html
  • 7 - The assign Method - Exercises.html

  • 5 - Basic Data Analysis with Pandas
  • 1 -The sum Method
  • 2 -The count Method
  • 2 - The sum Method - Exercises.html
  • 3 -Mean and Median
  • 3 - The count Method - Exercises.html
  • 4 -Standard Deviation and the describe Method
  • 4 - Mean and Median - Exercises.html
  • 5 -Using describe on Non-Numeric Fields
  • 5 - Standard Deviation and the describe Method - Exercises.html
  • 6 -The unique and nunique Methods
  • 6 - Using describe on Non-Numeric Fields - Exercises.html
  • 7 -The value counts Method
  • 7 - The unique and nunique Methods - Exercises.html
  • 8 - The value counts Method - Exercises.html

  • 6 - Indexing and Sorting
  • 1 -The iloc Method
  • 2 -Indexing Basics
  • 2 - The iloc Method - Exercises.html
  • 3 -The loc Method
  • 3 - Indexing Basics - Exercises.html
  • 4 -Sorting by Index
  • 4 - The loc Method - Exercises.html
  • 5 -Sorting By Columns
  • 5 - Sorting by Index - Exercises.html
  • 6 -Dropping Rows By Index
  • 6 - Sorting By Columns - Exercises.html
  • 7 - Dropping Rows By Index - Exercises.html

  • 7 - Selecting Data with Criteria
  • 1 -Filtering DataFrames with a Boolean Series
  • 2 -Applying Other Logical Conditions
  • 2 - Filtering DataFrames with a Boolean Series - Exercises.html
  • 3 -The between and isin Methods
  • 3 - Applying Other Logical Conditions - Exercises.html
  • 4 -Combining Conditions Using the & Operator
  • 4 - The between and isin Methods - Exercises.html
  • 5 -Combining Conditions Using the Operator
  • 5 - Combining Conditions Using the & Operator - Exercises.html
  • 6 -Combining And & Or Logic
  • 6 - Combining Conditions Using the Operator - Exercises.html
  • 7 -Negation
  • 7 - Combining And & Or Logic - Exercises.html
  • 8 -The isna Method
  • 8 - Negation - Exercises.html
  • 9 - The isna Method - Exercises.html

  • 8 - Updating DataFrames
  • 1 -Updating DataFrame Values with loc
  • 2 -Replacing DataFrame Values
  • 2 - Updating DataFrame Values with loc - Exercises.html
  • 3 -Updating Values with Boolean Masks
  • 3 - Replacing DataFrame Values - Exercises.html
  • 4 -Removing Null Values
  • 4 - Updating Values with Boolean Masks - Exercises.html
  • 5 -Replacing Null Values
  • 5 - Removing Null Values - Exercises.html
  • 6 -Identifying Duplicate Data
  • 6 - Replacing Null Values - Exercises.html
  • 7 -Removing Duplicate Data
  • 8 - Identifying and Removing Duplicate Data - Exercises.html

  • 9 - Combining Datasets
  • 1 -Stacking Datasets Vertically I
  • 2 -Orders 2021.csv
  • 2 -Orders 2022.csv
  • 2 -Orders 2023.csv
  • 2 -Stacking Datasets Vertically II
  • 3 -Fetching Excel Data Into Pandas
  • 3 -Orders.xlsx
  • 3 -Order Details 2021.csv
  • 3 -Order Details 2022.csv
  • 3 -Order Details 2023.csv
  • 3 - Stacking Datasets Vertically - Exercises.html
  • 4 -Customers.csv
  • 4 -Joining DataFrames Horizontally I
  • 4 -Orders 2021.csv
  • 4 -Order Details.xlsx
  • 4 - Fetching Excel Data Into Pandas - Exercises.html
  • 5 -Joining DataFrames Horizontally II
  • 6 -Customers.csv
  • 6 -Left and Right Joins
  • 6 -Orders 2021.csv
  • 6 -Order Details 2021.csv
  • 6 -Products.csv
  • 6 - Joining DataFrames Horizontally - Exercises.html
  • 7 -Full Outer Joins
  • 8 -Combining More Than Two Tables
  • 8 -Customers.csv
  • 8 -Orders 2021.csv
  • 8 -Order Details 2021.csv
  • 8 -Order Details 2022.csv
  • 8 -Order Details 2023.csv
  • 8 -Products.csv
  • 8 - Outer Joins - Exercises.html
  • 9 -Customers.csv
  • 9 -Orders 2022.csv
  • 9 -Order Details 2022.csv
  • 9 -Products.csv
  • 9 - Combining More Than Two Tables - Exercises.html

  • 10 - Grouping and Aggregation
  • 1 -Grouping and Aggregation 101
  • 2 -Applying Multiple Aggregations
  • 2 - Grouping and Aggregation 101 - Exercises.html
  • 3 -Grouping By Multiple Columns
  • 3 - Applying Multiple Aggregations - Exercises.html
  • 4 -The transform Method
  • 4 - Grouping By Multiple Columns - Exercises.html
  • 5 -Pythonic Pivot Tables
  • 5 - The transform Method - Exercises.html
  • 6 - Pythonic Pivot Tables - Exercises.html

  • 11 - Working with String Data
  • 1 -upper, lower, and capitalize
  • 2 -The len Method
  • 2 - upper, lower, and capitalize - Exercises.html
  • 3 -Regular Expressions 101
  • 3 - The len Method - Exercises.html
  • 4 -Matching Digits with Regular Expressions
  • 4 - Regular Expressions 101 - Exercise.html
  • 5 -The contains Method
  • 5 - Matching Digits with Regular Expressions - Exercises.html
  • 6 -The replace Method I
  • 6 - The contains Method - Exercises.html
  • 7 -The replace Method II
  • 8 - The replace Method - Exercises.html

  • 12 - Working with Datetime Data
  • 1 -Using Datetime Values as Criteria
  • 2 -The datetime Module I
  • 2 - Using Datetime Values as Criteria - Exercises.html
  • 3 -The datetime Module II
  • 4 -Date Math in Pandas
  • 4 - The datetime Module - Exercises.html
  • 5 -The shift Method I
  • 5 - Date Math in Pandas - Exercises.html
  • 6 -The shift Method II
  • 7 -Calculating rolling Averages
  • 7 - The shift Method - Exercises.html
  • 8 - Calculating rolling Averages - Exercises.html

  • 13 - Data Visualization with Pandas
  • 1 -Data Visualization 101.1
  • 2 -Data Visualization 101.2
  • 3 -Bar Plots
  • 3 - Data Visualization - Exercises.html
  • 4 -Scatter Plots
  • 4 - Bar Plots - Exercises.html
  • 5 -Customizing Plot Appearance
  • 5 - Scatter Plots - Exercises.html
  • 6 -Customizing Plot Axes
  • 7 - Customizing Plots - Exercises.html

  • 14 - Functional Programming in Python
  • 1 -Apply-ing Functions to Data Analysis
  • 2 -If Statements in Python
  • 3 -Incorporating Multiple Logical Conditions
  • 4 -Incorporating And and Or Logic
  • 5 -Functions in Python
  • 5 - If Statements - Exercises.html
  • 6 -Returning Values From Functions I
  • 7 -Returning Values From Functions II
  • 8 - Functions - Exercises.html

  • 15 - Leveraging the map and apply Methods
  • 1 -The map Method
  • 2 -Using map with Custom Functions I
  • 2 - The map Method - Exercises.html
  • 3 -Using map with Custom Functions II
  • 4 -The apply Method
  • 4 - Using map with Custom Functions - Exercises.html
  • 5 -Applying apply to Multiple Columns
  • 5 - The apply Method - Exercises.html
  • 6 - Applying apply to Multiple Columns - Exercises.html

  • 16 - BONUS LESSON
  • 1 - BONUS LESSON.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 42749
    حجم: 6081 مگابایت
    مدت زمان: 1127 دقیقه
    تاریخ انتشار: ۲۸ دی ۱۴۰۳
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید