وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

[NEW] AWS Certified AI Practitioner AIF-C01

سرفصل های دوره

Pass the AWS AI Practitioner AIF-C01 exam with this course by Jairo Pirona | Practice Exam included | All topics covered


1 - Introduction
  • 1 -INTRO
  • 2 -About the AWS Certified AI Practitioner exam
  • 3 -Creating an AWS Account
  • 4 -AWS Budgets
  • 5 -AWS Cost Explorer
  • 6 -The birth of Artificial Intelligence

  • 2 - Files and slides download
  • 1 -AWS-Certified-AI-Practitioner Exam-Guide.pdf
  • 1 -Amazon Q Business Getting Started Files.zip
  • 1 -PRESENTACION AI PRACTITIONER.pdf
  • 1 - Download study material.html

  • 3 - Domain 1 Fundamentals of AI and ML
  • 1 -Intro Domain 1 - Fundamentals of Machine Learning and Artificial Intelligence
  • 2 -Basic AI terms (AI, ML, deep learning, neural networks, computer vision, etc) P1
  • 3 -Basic AI terms (AI, ML, deep learning, neural networks, computer vision, etc) P2
  • 4 -Similarities and differences between AI, ML, and deep learning
  • 5 -Inferences, Data and Learning Techniques in AI. PARTE 1
  • 6 -Inferences, Data and Learning Techniques in AI. PARTE 2
  • 7 -Inferences, Data and Learning Techniques in AI. PARTE 3
  • 8 -Recognizing the applications where AIML can add value
  • 9 -Determining when AIML solutions are not appropriate
  • 10 -Selecting the appropriate ML techniques for specific use cases
  • 11 -Practical AI use cases - AWS managed AIML services. PART 1
  • 12 -Practical AI use cases - AWS managed AIML services. PART 2
  • 13 -Examples of real-world AI applications
  • 14 -Machine Learning Development Lifecycle. PART 1 (ML pipeline, lifecycle, etc)
  • 15 -Machine Learning Development Lifecycle. PART 2 (data collection, data pre, etc)
  • 16 -Machine Learning Development Lifecycle. PART 3 (model training, tuning)
  • 17 -Machine Learning Development Lifecycle. PART 4 (Evaluation)
  • 18 -Machine Learning Development Lifecycle. PART 5 (Evaluation)
  • 19 -Machine Learning Development Lifecycle. PART 6 (Deployment)
  • 20 -Machine Learning Development Lifecycle. PART 7 (Monitoring)
  • 21 -Fundamental concepts of ML operations (MLOps)

  • 4 - Domain 2 Fundamentals of Generative AI
  • 1 -INTRO
  • 2 -Foundational Generative AI concepts
  • 3 -Foundation Models (FM)
  • 4 -Multi-modal Models
  • 5 -Generative Adversarial Networks (GANs)
  • 6 -Variations Generative Adversarial Networks (GANs)
  • 7 -Diffusion Models
  • 8 -Potential use cases for Generative AI models
  • 9 -Foundation model lifecycle (Generative AI)
  • 10 -Advantages of Generative AI
  • 11 -Disadvantages of Generative AI solutions
  • 12 -Factors to select appropriate Generative AI models
  • 13 -Business value and metrics for Generative AI applications
  • 14 -AWS services and features to develop Generative AI applications
  • 15 -Advantages and Benefits of AWS AI solutions
  • 16 -Cost tradeoffs of AWS Generative AI services
  • 17 -AWS AIMLGen AI services stack

  • 5 - Domain 3 Applications of Foundation Models
  • 1 -INTRO
  • 2 -Criteria to choose pre-trained models
  • 3 -Retrieval Augmented Generation (RAG) and its business applications
  • 4 -Optimizing Foundation Models with RAG
  • 5 -Optimizing Foundation Models with fine-tuning
  • 6 -INTRO - Prompt Engineering
  • 7 -Concepts and constructs of prompt engineering
  • 8 -Modifying prompts
  • 9 -Best practices for prompt engineering
  • 10 -Prompt engineering techniques
  • 11 -Potential risks and limitations of prompt engineering

  • 6 - Domain 4 Guidelines for Responsible AI
  • 1 -Intro
  • 2 -Responsible AI
  • 3 -Responsible AI Challenges
  • 4 -Core dimensions of responsible AI
  • 5 -Business benefits of responsible AI
  • 6 -Amazon Services and Tools for Responsible AI
  • 7 -Responsible Considerations to Select a Model
  • 8 -Responsible Preparation for Datasets
  • 9 -Transparent and Explainable Models
  • 10 -AWS tools for transparency and explainability
  • 11 -Responsible AI Trade-Offs
  • 12 -Principles of Human-Centered Design for Explainable AI

  • 7 - Domain 5 Security, Compliance, and Governance for AI Solutions
  • 1 -Intro
  • 2 -Strategic Guidance for Security, Governance, and Compliance
  • 3 -Compliance Standards for AI Systems
  • 4 -AWS Services for Governance and Compliance
  • 5 -Data Governance Strategies
  • 6 -Approaches for Implementing Governance Strategies
  • 7 -Security and Privacy Considerations for AI Systems
  • 8 -AWS Services and Features for Securing AI Systems
  • 9 -Understanding Data and Model Lineage
  • 10 -Best Practices for Secure Data Engineering

  • 8 - Machine Learning Services Hands On
  • 1 -Amazon Q Business INTRO
  • 2 -Amazon Q Business PARTE 1
  • 3 -Amazon Q Business PARTE 2
  • 4 -Amazon Q Business PARTE 3
  • 5 -Amazon Bedrock
  • 6 -Amazon Rekognition
  • 7 -Amazon SageMaker
  • 8 -Amazon Augmented AI (Amazon A2I)
  • 9 -Amazon Comprehend
  • 10 -Amazon Comprehend DEMO
  • 11 -Amazon Kendra
  • 12 -Amazon Fraud Detector
  • 13 -Amazon Lex
  • 14 -Amazon Polly
  • 15 -Amazon Textract
  • 16 -Amazon Transcribe
  • 17 -Amazon Translate
  • 18 -Amazon Personalize

  • 9 - Exam Prep - AWS Certified AI Practitioner
  • 1 -Exam-Style Questions
  • 2 -Register for the Exam
  • 3 -Apply a 50% discount on your certification exam
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 41582
    حجم: 3353 مگابایت
    مدت زمان: 514 دقیقه
    تاریخ انتشار: ۱۸ آذر ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید