وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Science with Python and Machine Learning For Beginners

سرفصل های دوره

Learn how to use Python,Pandas,NumPy,Matplotlib,Seaborn, Data Wrangling,Learnbuild models, train and deploy models.


1 - Introduction to Data Science
  • 1 - Introduction.html
  • 2 - What is Data Science.html
  • 3 - Importance of Data Science in Todays World.html
  • 4 - Overview of Python for Data Science.html
  • 5 - Basics of statistics for data analysis.html
  • 6 - Ethical Considerations in Data Science.html
  • 7 - Introduction to Python Programming.html

  • 2 - Environment Setup
  • 8 - Python Installation on Windows
  • 9 - What are virtual environments
  • 10 - Creating and activating a virtual environment on Windows
  • 11 - Python Installation on macOS.html
  • 12 - Creating and activating a virtual environment on macOS.html
  • 13 - What is Jupyter Notebook.html
  • 14 - Installing Pandas and Jupyter Notebook in the Virtual Environment
  • 15 - Starting Jupyter Notebook
  • 16 - Exploring Jupyter Notebook Server Dashboard Interface
  • 17 - Creating a new Notebook
  • 18 - Exploring Jupyter Notebook Source and Folder Files
  • 19 - Exploring the Notebook Interface

  • 3 - Data Manipulation and visualization with Python and pandas
  • 20 - Overview of Pandas.html
  • 21 - Pandas Data Structures.html
  • 22 - Creating a Pandas Series from a List
  • 23 - Creating a Pandas Series from a List with Custom Index
  • 24 - Creating a pandas series from a Python Dictionary
  • 25 - Accessing Data in a Series using the index by label
  • 26 - Accessing Data in a Series By position
  • 27 - Slicing a Series by Label
  • 28 - Creating a DataFrame from a dictionary of lists
  • 29 - Creating a DataFrame From a list of dictionaries
  • 30 - Accessing data in a DataFrame
  • 31 - AAPL.csv
  • 31 - Download Dataset
  • 32 - Loading Dataset into a DataFrame
  • 33 - Inspecting the data
  • 34 - Data Cleaning
  • 35 - Data transformation and analysis
  • 36 - Visualizing data

  • 4 - Introduction to Machine Learning Build and Train a Machine Learning Model
  • 37 - What is Machine Learning.html
  • 38 - Installing and importing libraries
  • 39 - Data Preprocessing.html
  • 40 - What is a Dataset.html
  • 41 - Downloading dataset
  • 42 - Exploring the Dataset
  • 43 - Handle missing values and drop unnecessary columns
  • 43 - handling-missing-values.txt
  • 44 - Encode categorical variables
  • 44 - Encode-categorical-variables.txt
  • 45 - What is Feature Engineering.html
  • 46 - Create new features
  • 46 - Create-new-features.txt
  • 47 - Dropping unnecessary columns
  • 47 - Dropping-unnecessary-columns.txt
  • 48 - Visualize survival rate by gender
  • 48 - bar-plot-code.txt
  • 49 - Visualize survival rate by class
  • 49 - bar-plot-2.txt
  • 50 - Visualize numerical features
  • 50 - visualize-numeric-data.txt
  • 51 - Visualize the distribution of Age
  • 51 - Visualize-the-distribution-of-Age.txt
  • 52 - Visualize number of passengers in each passenger class
  • 52 - Visualize-number-of-passengers-in-each-passenger-class.txt
  • 53 - Visualize number of passengers that survived
  • 53 - countplot.txt
  • 54 - Visualize the correlation matrix of numerical variables
  • 55 - Visualize the distribution of Fare
  • 55 - Visualize-the-distribution-of-Fare.txt
  • 56 - Data Preparation and Training Model.html
  • 57 - What is a Model.html
  • 58 - Define features and target variable
  • 58 - define-features.txt
  • 59 - Split data into training and testing sets
  • 59 - Split-data.txt
  • 60 - Standardize features
  • 60 - Standardize-features.txt
  • 61 - What is a logistic regression model.html
  • 62 - Train logistic regression model
  • 62 - regression-model.txt
  • 63 - Making Predictions
  • 64 - What is accuracy in machine learning.html
  • 65 - What is confusion matrix.html
  • 66 - What is is classification report.html
  • 67 - What is a Heatmap.html
  • 68 - Evaluate the model using accuracy confusion matrix and classification report
  • 68 - evaluate.txt
  • 69 - Visualize the confusion matrix
  • 69 - confusion-matrix.txt
  • 70 - Saving the Model
  • 70 - save-model.txt
  • 71 - Loading the model
  • 71 - load-model.txt
  • 72 - Improving Understanding of the models prediction
  • 73 - Building a decision tree
  • 73 - DECISION-TREES.txt
  • 74 - Building a random forest
  • 74 - RANDOM-FOREST.txt

  • 5 - Predicting real house prices using machine learning
  • 75 - Importing Libraries and modules
  • 75 - import-more-modules.txt
  • 76 - Loading dataset and creating a dataframe
  • 76 - load-housing-dataset.txt
  • 77 - Checking for missing values
  • 78 - Dropping column and splitting data
  • 79 - Standardize the features for housing dataframe
  • 79 - standardize-features-for-housing-dataset.txt
  • 80 - Initialize and train the regression model
  • 80 - model-training.txt
  • 81 - Make predictions on the test set
  • 81 - predictions.txt
  • 82 - Evaluating the model for the housing dataset
  • 82 - evaluate-housing-model.txt
  • 83 - Predicting a small sample of data
  • 83 - predicting-sample-data.txt
  • 84 - Creating scatter plot
  • 84 - scatter-plot-for-housing-data.txt
  • 85 - Creating a bar plot
  • 85 - housing-data-barplot.txt
  • 86 - Saving the housing model
  • 86 - save-housing-model.txt
  • 87 - Loading the housing model

  • 6 - Build a Web App House Price Prediction Tool
  • 88 - What is Flask.html
  • 89 - Installing Flask
  • 90 - Installing Visual Studio Code
  • 91 - Creating a minimal flask app
  • 92 - How to run a flask app
  • 93 - Http and Http Methods.html
  • 94 - Loading the saved model and scaler into Python file
  • 95 - Define the home route
  • 96 - Define the prediction route
  • 97 - Creating the template
  • 98 - Adding a form to the template
  • 99 - Displaying predictions and clearing form inputs
  • 100 - Testing the prediction tool
  • 101 - Exploring deployment and hosting options.html
  • 102 - Create a new account on pythonanywhere
  • 103 - Creating a new web app in PythonAnywhere
  • 104 - Uploading files to Pythonanywhere
  • 105 - Creating and activating a virtual environment on PythonAnywhere
  • 106 - What is a WSGI File.html
  • 107 - Configuring WSGI File
  • 108 - Running your app in a cloud hosting environment
  • 109 - Project files.html
  • 109 - app.zip
  • 109 - index.html
  • 109 - model-scaler.zip

  • 7 - Python Basics for Data Science
  • 110 - Python Expressions
  • 111 - Python Statements
  • 112 - Python Code Comments
  • 113 - Python Data Types
  • 114 - Casting Data Types
  • 115 - Python Variables
  • 116 - Python List
  • 117 - Python Tuple
  • 118 - Python Dictionaries
  • 119 - Python Operators
  • 120 - Python Conditional Statements
  • 121 - Python Loops
  • 122 - Python Functions
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 39369
    حجم: 2576 مگابایت
    مدت زمان: 484 دقیقه
    تاریخ انتشار: 9 مرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید