وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
2

Data Science with Python and Machine Learning For Beginners

سرفصل های دوره

Learn how to use Python,Pandas,NumPy,Matplotlib,Seaborn, Data Wrangling,Learnbuild models, train and deploy models.


1 - Introduction to Data Science
  • 1 - Introduction.html
  • 2 - What is Data Science.html
  • 3 - Importance of Data Science in Todays World.html
  • 4 - Overview of Python for Data Science.html
  • 5 - Basics of statistics for data analysis.html
  • 6 - Ethical Considerations in Data Science.html
  • 7 - Introduction to Python Programming.html

  • 2 - Environment Setup
  • 8 - Python Installation on Windows
  • 9 - What are virtual environments
  • 10 - Creating and activating a virtual environment on Windows
  • 11 - Python Installation on macOS.html
  • 12 - Creating and activating a virtual environment on macOS.html
  • 13 - What is Jupyter Notebook.html
  • 14 - Installing Pandas and Jupyter Notebook in the Virtual Environment
  • 15 - Starting Jupyter Notebook
  • 16 - Exploring Jupyter Notebook Server Dashboard Interface
  • 17 - Creating a new Notebook
  • 18 - Exploring Jupyter Notebook Source and Folder Files
  • 19 - Exploring the Notebook Interface

  • 3 - Data Manipulation and visualization with Python and pandas
  • 20 - Overview of Pandas.html
  • 21 - Pandas Data Structures.html
  • 22 - Creating a Pandas Series from a List
  • 23 - Creating a Pandas Series from a List with Custom Index
  • 24 - Creating a pandas series from a Python Dictionary
  • 25 - Accessing Data in a Series using the index by label
  • 26 - Accessing Data in a Series By position
  • 27 - Slicing a Series by Label
  • 28 - Creating a DataFrame from a dictionary of lists
  • 29 - Creating a DataFrame From a list of dictionaries
  • 30 - Accessing data in a DataFrame
  • 31 - AAPL.csv
  • 31 - Download Dataset
  • 32 - Loading Dataset into a DataFrame
  • 33 - Inspecting the data
  • 34 - Data Cleaning
  • 35 - Data transformation and analysis
  • 36 - Visualizing data

  • 4 - Introduction to Machine Learning Build and Train a Machine Learning Model
  • 37 - What is Machine Learning.html
  • 38 - Installing and importing libraries
  • 39 - Data Preprocessing.html
  • 40 - What is a Dataset.html
  • 41 - Downloading dataset
  • 42 - Exploring the Dataset
  • 43 - Handle missing values and drop unnecessary columns
  • 43 - handling-missing-values.txt
  • 44 - Encode categorical variables
  • 44 - Encode-categorical-variables.txt
  • 45 - What is Feature Engineering.html
  • 46 - Create new features
  • 46 - Create-new-features.txt
  • 47 - Dropping unnecessary columns
  • 47 - Dropping-unnecessary-columns.txt
  • 48 - Visualize survival rate by gender
  • 48 - bar-plot-code.txt
  • 49 - Visualize survival rate by class
  • 49 - bar-plot-2.txt
  • 50 - Visualize numerical features
  • 50 - visualize-numeric-data.txt
  • 51 - Visualize the distribution of Age
  • 51 - Visualize-the-distribution-of-Age.txt
  • 52 - Visualize number of passengers in each passenger class
  • 52 - Visualize-number-of-passengers-in-each-passenger-class.txt
  • 53 - Visualize number of passengers that survived
  • 53 - countplot.txt
  • 54 - Visualize the correlation matrix of numerical variables
  • 55 - Visualize the distribution of Fare
  • 55 - Visualize-the-distribution-of-Fare.txt
  • 56 - Data Preparation and Training Model.html
  • 57 - What is a Model.html
  • 58 - Define features and target variable
  • 58 - define-features.txt
  • 59 - Split data into training and testing sets
  • 59 - Split-data.txt
  • 60 - Standardize features
  • 60 - Standardize-features.txt
  • 61 - What is a logistic regression model.html
  • 62 - Train logistic regression model
  • 62 - regression-model.txt
  • 63 - Making Predictions
  • 64 - What is accuracy in machine learning.html
  • 65 - What is confusion matrix.html
  • 66 - What is is classification report.html
  • 67 - What is a Heatmap.html
  • 68 - Evaluate the model using accuracy confusion matrix and classification report
  • 68 - evaluate.txt
  • 69 - Visualize the confusion matrix
  • 69 - confusion-matrix.txt
  • 70 - Saving the Model
  • 70 - save-model.txt
  • 71 - Loading the model
  • 71 - load-model.txt
  • 72 - Improving Understanding of the models prediction
  • 73 - Building a decision tree
  • 73 - DECISION-TREES.txt
  • 74 - Building a random forest
  • 74 - RANDOM-FOREST.txt

  • 5 - Predicting real house prices using machine learning
  • 75 - Importing Libraries and modules
  • 75 - import-more-modules.txt
  • 76 - Loading dataset and creating a dataframe
  • 76 - load-housing-dataset.txt
  • 77 - Checking for missing values
  • 78 - Dropping column and splitting data
  • 79 - Standardize the features for housing dataframe
  • 79 - standardize-features-for-housing-dataset.txt
  • 80 - Initialize and train the regression model
  • 80 - model-training.txt
  • 81 - Make predictions on the test set
  • 81 - predictions.txt
  • 82 - Evaluating the model for the housing dataset
  • 82 - evaluate-housing-model.txt
  • 83 - Predicting a small sample of data
  • 83 - predicting-sample-data.txt
  • 84 - Creating scatter plot
  • 84 - scatter-plot-for-housing-data.txt
  • 85 - Creating a bar plot
  • 85 - housing-data-barplot.txt
  • 86 - Saving the housing model
  • 86 - save-housing-model.txt
  • 87 - Loading the housing model

  • 6 - Build a Web App House Price Prediction Tool
  • 88 - What is Flask.html
  • 89 - Installing Flask
  • 90 - Installing Visual Studio Code
  • 91 - Creating a minimal flask app
  • 92 - How to run a flask app
  • 93 - Http and Http Methods.html
  • 94 - Loading the saved model and scaler into Python file
  • 95 - Define the home route
  • 96 - Define the prediction route
  • 97 - Creating the template
  • 98 - Adding a form to the template
  • 99 - Displaying predictions and clearing form inputs
  • 100 - Testing the prediction tool
  • 101 - Exploring deployment and hosting options.html
  • 102 - Create a new account on pythonanywhere
  • 103 - Creating a new web app in PythonAnywhere
  • 104 - Uploading files to Pythonanywhere
  • 105 - Creating and activating a virtual environment on PythonAnywhere
  • 106 - What is a WSGI File.html
  • 107 - Configuring WSGI File
  • 108 - Running your app in a cloud hosting environment
  • 109 - Project files.html
  • 109 - app.zip
  • 109 - index.html
  • 109 - model-scaler.zip

  • 7 - Python Basics for Data Science
  • 110 - Python Expressions
  • 111 - Python Statements
  • 112 - Python Code Comments
  • 113 - Python Data Types
  • 114 - Casting Data Types
  • 115 - Python Variables
  • 116 - Python List
  • 117 - Python Tuple
  • 118 - Python Dictionaries
  • 119 - Python Operators
  • 120 - Python Conditional Statements
  • 121 - Python Loops
  • 122 - Python Functions
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 39369
    حجم: 2576 مگابایت
    مدت زمان: 484 دقیقه
    تاریخ انتشار: ۹ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید