وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

LLM Foundations: Vector Databases for Caching and Retrieval Augmented Generation (RAG)

سرفصل های دوره

As large language models grow in popularity, the infrastructure to be used around them also becomes vital to reduce costs, generate accurate responses, and improve efficiency. Vector databases play a vital role in several LLM use cases to help alleviate LLM shortcomings, reduce costs and latency. Knowledge of its basics and applications are vital for any engineer building applications with LLMs, and in this course, Kumaran Ponnambalam teaches you the basics of vector databases and how to use them in LLM caching and retrieval-augmented generation (RAG).

Kumaran begins with a discussion on the basics of vector databases and their applications. He then explores specialized databases for storing vectors and uses the Milvus database as the reference example, and demonstrates read and write operations with the Milvus database. Learn how to use vector databases for LLM caching, with an example use case, along with examples of RAG use cases. Finally, Kumaran concludes with a discussion on optimizing vector databases.


01 - Introduction
  • 01 - GenAI with vector databases
  • 02 - Course coverage and prerequisites

  • 02 - 1. Introduction to Vector Databases
  • 01 - What is a vector
  • 02 - Vectorization in NLP
  • 03 - Vector similarity search
  • 04 - Vector databases
  • 05 - Pros and cons of vector databases

  • 03 - 2. Milvus Database Concepts
  • 01 - Introduction to Milvus DB
  • 02 - Milvus architecture
  • 03 - Collections in Milvus
  • 04 - Partitions in Milvus
  • 05 - Indexes in Milvus
  • 06 - Managing data in Milvus
  • 07 - Query and search in Milvus
  • 08 - Set up Milvus and exercise files

  • 04 - 3. Milvus Database Operations
  • 01 - Create a connection
  • 02 - Create databases and users
  • 03 - Create collections
  • 04 - Insert data into Milvus
  • 05 - Build an index
  • 06 - Query scalar data
  • 07 - Search vector fields
  • 08 - Delete objects and entities

  • 05 - 4. Vector DB for LLM Query Caching
  • 01 - LLMs and caching
  • 02 - Prompt caching workflow
  • 03 - Set up the Milvus cache
  • 04 - Inference process and caching
  • 05 - Cache management

  • 06 - 5. Introduction to Retrieval Augmented Generation (RAG)
  • 01 - LLMs as a knowledge source
  • 02 - Introduction to retrieval augmented generation
  • 03 - RAG Knowledge curation process
  • 04 - RAG question-answering process
  • 05 - Applications of RAG

  • 07 - 6. Implementing RAG with Milvus
  • 01 - Set up Milvus for RAG
  • 02 - Prepare data for the knowledge base
  • 03 - Populate the Milvus database
  • 04 - Answer questions with RAG

  • 08 - 7. Vector Databases Best Practices
  • 01 - Choose a vector database
  • 02 - Combine vector and scalar data
  • 03 - Distance measure considerations
  • 04 - Tune vector DB performance

  • 09 - Conclusion
  • 01 - Continue with LLMs
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 37460
    حجم: 191 مگابایت
    مدت زمان: 94 دقیقه
    تاریخ انتشار: 21 خرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید