وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Natural Language Processing Bootcamp in Python

سرفصل های دوره

Learn the fundamentals of Text Mining and NLP using Text Processing, NLTK, Sentiment Analysis and Neural Networks


1 - Course Introduction
  • 1 - Course Scripts.txt
  • 1 - DareData Website.txt
  • 1 - Introduction
  • 1 - Ivos Github.txt
  • 1 - LinkedIn Ivo.txt
  • 2 - Note Course is being Updated during 2023
  • 3 - IMPORTANT LECTURE Dont skip this one
  • 4 - Course Materials and Speed Up.html

  • 2 - Installing Anaconda and Initial Setup
  • 5 - Link to slides.txt
  • 5 - Slides Setting up the Environment
  • 6 - Anaconda Distribution Download Link.txt
  • 6 - Installing the Anaconda Distribution
  • 7 - Importing an Environment to Anaconda
  • 8 - Creating an Environment from Scratch and Installing Individual Libraries
  • 9 - Alternative Running Notebooks on Google Colab

  • 3 - Optional for Beginners Python Basics MiniCourse
  • 10 - Link to Slides.txt
  • 10 - Slides Python Basics Course Part 1
  • 11 - Link to Slides.txt
  • 11 - Slides Python Basics Course Part 2
  • 12 - Getting Started Jupyter Notebook Overview
  • 13 - Using Python as a Calculator Exploring Integers and Floats
  • 14 - Exploring Python Libraries Modules Using the Math Library
  • 14 - Python Math Library Documentation.txt
  • 15 - Python Strings and Indexes
  • 16 - Python Lists
  • 17 - Discussing Methods and the Mutability Property
  • 18 - Python Sets
  • 19 - Python Dictionaries
  • 20 - Python Tuples
  • 21 - Control Flow If Statements
  • 22 - Control Flow Python Loops
  • 23 - Python Functions
  • 24 - Numpy Cheat Sheet.txt
  • 24 - Numpy Documentation.txt
  • 24 - Numpy Overview
  • 25 - Pandas Cheat Sheet.txt
  • 25 - Pandas Documentation.txt
  • 25 - Pandas Overview
  • 26 - Tutorial How to Complete the Exercises
  • 27 - Exercise Solutions Code Along Lecture

  • 4 - Optional for Beginners Basic Text Processing
  • 3 - Working with Text Quiz.html
  • 28 - Slides Basic Text Processing
  • 29 - Why Computers dont understand words as we do
  • 30 - String Indexing
  • 31 - Combining Strings
  • 32 - Iterating Strings and Format Method
  • 33 - Testing if String is in Sentence and Escaping Characters
  • 34 - String Methods 1 Sentence Length Conversions Casing Methods and IsAlpha
  • 35 - String Methods 2 Split Strip and Join
  • 36 - String Methods 3 Capitalize Replace Count and Find
  • 37 - Exercise Solutions Code Along Lecture String Basics

  • 5 - Exploring NLTK Natural Language Toolkit
  • 38 - Link to Slides.txt
  • 38 - Slides NLTK Intro Tokenizers and Text Normalization
  • 39 - Link to Slides.txt
  • 39 - Slides NLTK POS and NGrams
  • 40 - Natural Language Toolkit Library.txt
  • 40 - Section Introduction
  • 41 - Intro to Tokenization and Sentence Tokenizer
  • 41 - Natural Language Toolkit Library.txt
  • 41 - Punkt Sentence Tokenizer.txt
  • 42 - TreeBank Word Tokenizer.txt
  • 42 - Word Tokenizer Example
  • 43 - Cleaning our Tokens Removing Punctuation and lowercase
  • 44 - FreqDist NLTK Function
  • 45 - Introduction to Stemming Porter Lancaster and Snowball Stemmer
  • 45 - Porter Stemmer Documentation.txt
  • 45 - Stemming Corpus Medium Article.txt
  • 46 - Stemming Application Example
  • 47 - Introduction to Lemmatization
  • 48 - PartofSpeech POS Tagging
  • 48 - Perceptron POS Tagging Original Blog Post.txt
  • 49 - Training our own POS Tagger Part 1
  • 50 - Training our own POS Tagger Part 2 UniGram Tagger
  • 51 - Training our own POS Tagger Part 3 BiGram Tagger
  • 52 - Lemmatization and POS Tagging
  • 53 - Stop Words
  • 54 - NGrams Concept
  • 55 - Exercise Solutions Code Along Lecture NLTK

  • 6 - Project 1 Analyzing IMDB Reviews
  • 56 - Project Description Analyzing IMDB Reviews
  • 57 - Link to the Project Materials.html

  • 7 - Word Vectors Intuition
  • 58 - Slides Word Vectors Intuition
  • 59 - Introduction to Word Vectors and creating OneHot Vectors
  • 59 - Word Vectors Intuition Medium Article.txt
  • 60 - Initializing CoOccurence Matrix
  • 61 - Filling CoOccurence Matrix
  • 62 - Cosine Similarity Explanation.txt
  • 62 - Exploring Cosine Similarity
  • 63 - Visualizing Word Vectors
  • 64 - Exercise Solutions Code Along Lecture 1 Word Vectors
  • 65 - Exercise Solutions Code Along Lecture 2 Word Vectors

  • 8 - Optional Reading Text Data into Python
  • 66 - Link to slides.txt
  • 66 - Slides Reading Text Data into Python
  • 67 - Disaster Tweets Source Code.txt
  • 67 - Read Data from a CSV File Using Pandas
  • 68 - Read Data from a CSV File Using Python CSV
  • 69 - Paper where the data is based on.txt
  • 69 - Read Data from a TXT File
  • 70 - 1984 Wikipedia Page.txt
  • 70 - Scraping a Web Page using Requests and BeautifulSoup Wikipedia Example
  • 71 - Scraping a Web Page using Requests and BeautifulSoup Yahoo Finance Example
  • 72 - Scraping a Web Page Errors in Request
  • 73 - Scraping a Web Page using Specific Libraries

  • 9 - Continuous Bag of Words Implementation and Word2Vec
  • 74 - Link to slides.txt
  • 74 - Slides Neural Network Definition and Word2Vec
  • 75 - Continuous Bag of Words Model CBOW Introduction
  • 75 - Word2Vec Original Paper.txt
  • 76 - CBOW Creating Vocab and OneHot Vectors
  • 77 - CBOW Building Features X and Target Variable y
  • 78 - Neural Network Introduction and Diagram
  • 79 - A cool intuition on Neural Networks.txt
  • 79 - CBOW Training the Neural Network
  • 80 - CBOW Obtaining Word Vectors Embeddings
  • 81 - Extracting Wikipedia Data for CBOW Model
  • 82 - Building Context from Wikipedia Data
  • 83 - Turning Word and Context Into Mathematical Vectors
  • 84 - Fitting Neural Network on Wikipedia Data
  • 85 - Accuracy of a Model Intuition.txt
  • 85 - Performance of Neural Network and Predicting a Word Given a Context
  • 86 - Retrieving Word Embeddings and Word Similarities
  • 87 - Gensim Library.txt
  • 87 - Loading the Word2VecModel
  • 88 - Word2Vec Operations with Vectors Analogies
  • 89 - Word2Vec Visualizing Vectors using PCA
  • 90 - Exercise Solutions Code Along Lecture Word Vectors using Neural Networks

  • 10 - Project 2 The Python Archaelogist
  • 91 - Project Description The Python Archaelogist
  • 92 - Link to Project Materials.html

  • 11 - Text Representation
  • 93 - Slides Text Representation
  • 93 - Text Representation Medium Article.txt
  • 94 - Disaster Tweets Page.txt
  • 94 - Reading the Tweets File
  • 95 - Binary Vectorizer
  • 95 - Count Vectorizer Document.txt
  • 96 - Count Vectorizer
  • 97 - TFIDF Vectorizer
  • 98 - Creating Document Vectors via Word Embeddings
  • 99 - Exercise Solutions Text Representation Part 1
  • 100 - Exercise Solutions Text Representation Part 2

  • 12 - Text Classification
  • 101 - Slides Text Classification
  • 102 - Intro to Text Classification and Loading Positive Negative Reviews into Python
  • 103 - PreProcessing Text for Text Classification
  • 104 - Exploratory Data Analysis Log Ratio and Word Influence
  • 105 - Stemming and Vectorizing the Reviews
  • 106 - Creating WordVec Features and Target Array
  • 107 - Logistic Regression Intuition and Manually Tweaking Weights
  • 108 - Train and Test Split
  • 109 - Fitting and Evaluating Model
  • 110 - Obtaining the WeightsCoefficients of Regression Influence of Tokens
  • 111 - Training Model Using Word2Vec Features
  • 112 - Confusion Matrix Example
  • 113 - Naive Bayes Training
  • 114 - Predicting New Reviews Sentiment
  • 115 - Exercise Solutions Text Classification

  • 13 - Text Generation Markov Chain Models
  • 116 - Slides Text Classification
  • 117 - Introduction to Text Generation Tokenizing Sentence
  • 118 - Text Generation Building the Transition Matrix
  • 119 - First Attempt at Generating Text Using Transition Matrix
  • 120 - Creating the Transition Matrix for Wikipedia Data
  • 121 - Generating Text from Wiki Data Sampling from Top N Words
  • 122 - Exercise Solutions Text Generation

  • 14 - Course Ending
  • 123 - Bonus Lecture Other Courses.html
  • 124 - Course Feedback.html
  • 125 - Thank you
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 37444
    حجم: 14264 مگابایت
    مدت زمان: 1086 دقیقه
    تاریخ انتشار: 20 خرداد 1403
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید