1. Introduction to Numpy Library
2. Basics of numpy array object
3. Import Numpy & Access help
4. Creation of Array Object - np.array()
5. Attributes of Numpy Array
6. Array Indexing and Slicing
7. Array Creation Functions
8. Copy Arrays
9. Mathematical Operation on Numpy Arrays
10. Linear Algebra Functions in Numpy
11. Shape Modification of Arrays
12. np.arange()
13. Relational Operators & Aggregation Functions on Numpy Arrays
14. Boolean Masking
15. Broadcasting on Numpy Arrays
16. Summary of Numpy Library Journey
17. Introduction to Pandas
18. Working with Pandas Series
19. Mathematical Operation on Pandas Series
20. Dataframes in Pandas
21. Working with Data in Pandas DataFrame
22. Combining the DataFrames
23. Other Functions on Pandas DataFrame
24. Advanced Functions in Pandas DataFrame
25. Introduction to EDA
26. Accessing Google Colab
27. Loading the Large Dataset for Working
28. Preliminary Analysis on DataFrame
29. Null values in the Dataframe
30. Data Cleaning
31. Introduction to Data Visualization
32. Matplotlib Basics
33. Types of Plot - Line plot
34. Line Plots Hands On
35. Adjusting the Plots
36. Plot Adjustment Hands On
37. Scatter Plot
38. Scatter Plot hands on
39. Historgram Plot
40. Introduction to Seaborn
41. Exploring the data
42. Univariate & Bivariate Plots - Continuous Data
43. Plot - Categorical Data
44. Advanced Plots in Seaborn
45. Which Plot to use