وب سایت تخصصی شرکت فرین
6

Time Series Analysis and Forecasting using Python

سرفصل های دوره

Learn about Time Series Analysis and Forecasting models using Python in just under 11 hours.


1. Introduction
  • 1. Introduction.html

  • 2. Introduction to Time Series Forecasting
  • 1. What is Time Series
  • 2. Time Series vs Regression
  • 3. What is Time Series Analysis

  • 3. Understanding Time Series Data
  • 1. What is Anomaly Detection
  • 2. Components of Time Series
  • 3. Time Series Decomposition
  • 4. Implementation of Decomposition
  • 5. Additive and Multiplicative Decompostion
  • 6. Time Series Stationarity
  • 7. Testing Time Series Staionarity
  • 8. Transformation

  • 4. 4 Preprocessing and Data Cleaning
  • 1. Introduction to Pre-Processing
  • 2. Handle Missing Value
  • 3. Implementation of Handle Missing value in Python
  • 4. Outlier Treatment
  • 5. Sigma Technique (Standard Deviation)
  • 6. Feature Scaling
  • 7. Feature Scaling Technique (Standardization)
  • 8. Feature Scaling Technique (Normalization)
  • 9. Implementation of Feature Scaling
  • 10. Feature Encoding
  • 11. Implementation of Feature Encoding

  • 5. 5 Exploratory Data Analysis
  • 1. Introduction.html
  • 2. What is EDA
  • 3. What is Visualization
  • 4. Data Sourcing
  • 5. Data Cleaning
  • 6. Handling Missing Values (Theory)
  • 7. Handling Missing Values (Practicals)
  • 8. Outlier Treatment
  • 9. Outlier Treatment (Practicals)
  • 10. Types of Analysis
  • 11. Univariate Analysis
  • 12. Bivariate Analysis
  • 13. Multivariate Analysis
  • 14. Numerical Analysis
  • 15. Analysis (Practicals)
  • 16. Derived Metrics
  • 17. Feature Binning (Theory)
  • 18. Feature Binning (Practicals)
  • 19. Feature Encoding (Theory)
  • 20. Feature Encoding (Practicals)

  • 6. 6 Time Series Forecasting Models A Comprehensive Overview
  • 1. Algorithms
  • 2. ARIMA [part 1]
  • 3. ARIMA [part 2]
  • 4. Auto Regressive Theory
  • 5. Moving average Theory
  • 6. Auto-Correlation Function (ACF) &Partical Auto-Correlation Function (PACF)
  • 7. Find PDQ
  • 8. ARIMA [practicals 1]
  • 9. ARIMA [practicals 2]
  • 10. Implementation of ARIMA
  • 11. Decompostion
  • 12. Auto Correlation vs Partical Auto Correlation
  • 13. Choosing the best transformation
  • 14. Grid Search [part 1]
  • 15. Grid Search [part 2]
  • 16. Final Model
  • 17. FBProphet [part 1]
  • 18. FBProphet [part 2]
  • 19. FBProphet [part 3]

  • 7. 7 Multivariate Time Series Forecasting Methods
  • 1. Multi Variate TS Analysis
  • 2. FB Prophet Uni & Multi Variate

  • 8. 8 Evaluating Forecasting Performance
  • 1. Introduction
  • 2. Forecasting Evaluation Metrics
  • 3. Mean Squarred Error
  • 4. Root Mean Sqaured Error
  • 5. Mean Absolute Percentage Error

  • 9. 9 Time Series Forecasting in Practice Case Studies
  • 1. Project 1 - Energy Demand Forecasting [part 1]
  • 2. Project 1 - Energy Demand Forecasting [part 2]
  • 3. Project 1 - Energy Demand Forecasting [part 3]
  • 4. Project 2 - Stock Market Prediction [part 1]
  • 5. Project 2 - Stock Market Prediction [part 2]
  • 6. Project 2 - Stock Market Prediction [part 3]
  • 7. Project 3 - Demand Forecasting [part 1]
  • 8. Project 3 - Demand Forecasting [part 2]
  • 9. Project 3 - Demand Forecasting [part 3]
  • 10. Project 3 - Demand Forecasting [part 4]
  • 11. Project 3 - Demand Forecasting [part 5]
  • 12. Project 3 - Demand Forecasting [part 6]
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 32612
    حجم: 4181 مگابایت
    مدت زمان: 606 دقیقه
    تاریخ انتشار: ۷ فروردین ۱۴۰۳
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید