وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Modern Data Wrangling with AI and Python – Beginner to Pro

سرفصل های دوره

Learn how to streamline your data processing and analysis with the power of AI and Python. From beginner to pro.


1 - Welcome
  • 1 - Welcome to the course
  • 2 - Meet Gerhard
  • 3 - Is this course for you
  • 4 - What will you get out of this course
  • 5 - Whats in this course

  • 2 - Getting Started
  • 6 - Introduction
  • 7 - Getting started with Visual Studio Code.txt
  • 7 - Install Visual Studio Code.txt
  • 7 - VSC Key Features.txt
  • 7 - Visual Studio Code Installing and getting Started
  • 8 - Adding Extensions to VSC
  • 9 - Getting Started with VSC copilot.txt
  • 9 - GitHub copilot
  • 10 - Create a Github account
  • 11 - GitHub Copilot chat
  • 12 - Getting started with GitHub copilot.txt
  • 12 - GitHub Copilot continued
  • 13 - Testing if Copilot is working
  • 14 - Github copilot help content.html
  • 15 - Anaconda
  • 15 - Install Anaconda.txt
  • 16 - Github Desktop.txt
  • 16 - Installing Github Desktop
  • 17 - Getting started with Github Desktop.txt
  • 17 - The GitHub Desktop Interface
  • 18 - Code for the course.txt
  • 18 - The repository for this course
  • 19 - GIT optional
  • 19 - Install GIT.txt
  • 20 - Summary

  • 3 - Data Exploration What can you tell me about the data
  • 21 - Introduction
  • 22 - A spreadsheet program
  • 22 - sales-data-sample.csv
  • 23 - The challenge with spreadsheets
  • 24 - Data Wrangling Course Repo.txt
  • 24 - Follow along with me
  • 25 - Welcome to Python and AI
  • 25 - getting-the-data-you-need.zip
  • 26 - Markdown and Code fields in Jupyter
  • 26 - Markdown in Jupyter.txt
  • 26 - Notebook basics.txt
  • 27 - What is Pandas
  • 28 - Read a file in Pandas and display it
  • 29 - Describe the data
  • 30 - Do more with Copilot Jupyter and Python
  • 31 - Summary

  • 4 - Enough Python to start your journey
  • 32 - Introduction
  • 33 - Libraries
  • 34 - More Pandas
  • 34 - Pandas Getting Started.txt
  • 34 - readcsv.txt
  • 35 - Objects
  • 36 - Getting help from Large Language Models
  • 36 - What is a Library in Python.txt
  • 37 - Methods
  • 38 - Summary

  • 5 - My journey to data wrangling
  • 39 - My journey

  • 6 - Structured Data Tables
  • 40 - Introduction
  • 41 - Structured Data
  • 42 - Structured Data in Python
  • 43 - CSV files as structured data
  • 44 - Excel data as structured data
  • 45 - General methods for structured data Excel and CSV
  • 46 - SQL Tables
  • 47 - SQL data in Python
  • 48 - Summary

  • 7 - More on Python functions properties and some other goodies
  • 49 - Introduction
  • 50 - Functions
  • 51 - Function signatures
  • 52 - Function bodies
  • 53 - Using fucnctions
  • 54 - A function in action
  • 55 - Properties
  • 56 - Properties in code
  • 57 - For loops
  • 58 - For loops in code
  • 59 - Another example of for loops
  • 60 - Getting help Docstrings and signatures
  • 61 - Getting help online documentation
  • 62 - Getting help LLMs
  • 62 - OpenPyXL.txt
  • 63 - Getting help Github copilot
  • 64 - Summary

  • 8 - Unstructured Data
  • 65 - Introduction
  • 66 - Installing Tabula in condas
  • 67 - Tables in PDF documents
  • 68 - Extracting a table from a PDF with Python
  • 69 - Accessing particular cells in a dataframe
  • 70 - Rename the columns of a dataframe
  • 71 - Rename columns 2 and 3 of the dataframe
  • 72 - Rename the remainder of the columns and concatenate strings
  • 73 - Delete rows from a dataframe
  • 74 - Split values in a column
  • 75 - Drop columns in a dataframe
  • 76 - PDFs with text
  • 77 - Extract text from PDFs using Python
  • 78 - Summary

  • 9 - Web services or Application Web InterfacesAPIs
  • 79 - Introduction
  • 80 - Web services or Application Web InterfacesAPIs
  • 81 - Cat facts API.txt
  • 81 - JSON View.txt
  • 81 - The cat facts API
  • 82 - HTTP response status codes
  • 82 - HTTP response status codes.txt
  • 83 - JSON payloads
  • 84 - More on JSON
  • 85 - Import API call into Postman
  • 86 - Making an API call in Postman
  • 87 - Generate code in Postman
  • 88 - Execute Postman code in a Jupyter Notebook
  • 89 - Querying JSON objects in Python
  • 90 - Accessing lists and nested values in JSON
  • 91 - Converting JSON to Dataframes
  • 92 - Summary

  • 10 - Lists dictionaries and data types in Python
  • 93 - Introduction
  • 94 - Lists
  • 94 - List documentation.txt
  • 94 - List methods.txt
  • 95 - More than numbers
  • 96 - Lists were only scratching the surface
  • 97 - Lists and dictionaries in VSC
  • 98 - Lists in action
  • 99 - Dictionaries
  • 100 - Dictionaries in action
  • 101 - Data types
  • 102 - Data types in Jupyter
  • 103 - Lambdas
  • 104 - Lambdas in action
  • 105 - Conclusion

  • 11 - How do make your data useful Structuring
  • 106 - Introduction
  • 107 - Example dataset A Canadian manufacturing company
  • 108 - A data dictionary
  • 109 - REFDATE changing the data type of a column
  • 110 - GEO getting the number of unique values in a column
  • 111 - Dropping a column in a dataframe
  • 112 - DGUID Renaming and finding the meaning of a column
  • 113 - Principal statistics Filtering data
  • 114 - Dropping mor than one column UAM and UAMID
  • 115 - NAICS VECTOR and COORDINATE grouping by more than one column
  • 116 - Status Getting the number of unique values in a column and it the dataframe
  • 117 - Exporting the structured transformations to a CSV file
  • 118 - Repeating the work weve done
  • 119 - Python datetime.txt
  • 119 - The datatime data type
  • 119 - todatetime.txt
  • 120 - New methods used
  • 121 - Filtering
  • 122 - Adding a new column to a data frame
  • 123 - Summary

  • 12 - How do I clean data
  • 124 - Introduction
  • 125 - The Netflix dataset
  • 126 - Converting data and extracting digits from columns
  • 127 - Missing rows in strings
  • 128 - Replacing missing values in strings
  • 129 - Replacing missing values in numbers
  • 130 - Dropping missing rows
  • 131 - Identifying and dropping duplicate rows
  • 132 - Extracting numbers out of strings
  • 133 - Getting parts of a string slicing and substrings
  • 134 - Getting the end of a string and finding help
  • 135 - Getting words out of a string splitting
  • 136 - Advanced string extraction regular expressions
  • 137 - Getting help with regular expressions
  • 138 - Applying functions to strings mapping
  • 139 - Summary

  • 13 - Enrichment Making data valuable
  • 140 - Introduction
  • 141 - Columns in dataframes series
  • 142 - Getting rows by their number indexes
  • 143 - Combining data the concat function
  • 144 - Adding columns together using the concat function
  • 145 - Combining data by the same column name merge
  • 146 - Understanding joins
  • 147 - Left join returning all the rows in the left table
  • 148 - Right join all the rows in the right table
  • 149 - Outer join all the rows in both tables
  • 150 - Joining tables by index the Join method
  • 151 - Adding a new row to the dataframe
  • 152 - Removing the duplicates
  • 153 - Adding multiple rows to a dataframe
  • 154 - Changing the value of existing rows update
  • 155 - Updating rows based on a column setting the indexes
  • 156 - Updating a dataframe with merge
  • 157 - Summary

  • 14 - Validation Making sure the data is correct
  • 158 - Introduction
  • 159 - The characteristics of good data
  • 160 - Data lacking quality cause PR nightmares
  • 161 - Data accuracy
  • 162 - Getting help from GitHub copilot chat
  • 163 - Identifying duplicate rows reminder
  • 164 - Checking for missing valuesreminder
  • 165 - Data completeness
  • 166 - Data consistancy
  • 167 - Data reliability
  • 168 - Data relevance
  • 169 - Data timeliness
  • 170 - Summary

  • 15 - Publishing Querying and Presenting the data
  • 171 - Introduction
  • 172 - What is data publishing
  • 173 - Using Faker to generate fake data
  • 174 - Querying the data
  • 175 - Getting the total and average revenue by product
  • 176 - Displaying revenue by product in a chart
  • 177 - Use Matplotlib to generate a scattered plot
  • 178 - Displaying data over time using Matplotlib and Pandas
  • 179 - Use Seaborn for heatmaps
  • 180 - Exporting results to PDF
  • 181 - Exporting results to Excel
  • 182 - Exporting to CSV
  • 183 - Summary

  • 16 - Conclusion
  • 184 - Where to from here
  • 185 - Congratulations
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 28721
    حجم: 1818 مگابایت
    مدت زمان: 234 دقیقه
    تاریخ انتشار: ۲۲ دی ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید