وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
5

Data Science Methodology in Action using ikigailabs

سرفصل های دوره

Gain hands-on experience in building a Data Driven AI engagement using ikigailabs


1. Introduction
  • 1. Why This Course
  • 2.1 S1-L2-Course-Overview.pdf
  • 2. Course Overview
  • 3. Learning Objectives.html
  • 4.1 S1-L3-Course Outline.pdf
  • 4. Course Outlne
  • 5.1 L1-S4-DSM.pdf
  • 5. Data Science Methodology
  • 6. ASUM-DM Project Management Method components.html
  • 7.1 Instructors Bio.pdf
  • 7. Instructors Bio

  • 2. Set-up Sandbox
  • 1.1 S2-L1-Setup-Sandbox.pdf
  • 1. Sand-box set-up overview
  • 2. What is the requirement to share an Ikigai project with others.html
  • 3.1 S2-L2-Product-Features.pdf
  • 3. Product Features
  • 4. Which of the features apply to IkigaiLabs.html
  • 5.1 S2-L3-Product-Demonstration.pdf
  • 5. Product Demonstration
  • 6. What are various functionalities available with Ikigai flows.html

  • 3. Step 1 - Define Project
  • 1.1 S3-L1-Step-1-Define-Project-Concepts.pdf
  • 1. Define Project - Concepts
  • 2. Learn use case selection criteria.html
  • 3.1 S3-L2-Define-Project-Example.pdf
  • 3. Define Project - Example
  • 4. Learn use case components.html

  • 4. Step 2 - Describe Data
  • 1.1 S4-L1-Describe-Data-Concepts.pdf
  • 1. Describe Data - Concepts
  • 2. Learn big data characteristics.html
  • 3.1 S4-L2-Step-2-Describe-Data-Tasks-Deliverables.pdf
  • 3. Describe Data - Templates
  • 4.1 Health Equity DataSet ikigailabs.zip
  • 4.2 S4-L3-Task 1. Load Data Sources.pdf
  • 4. Step 2 - Task 1 - Load Data Sources
  • 5. Limit on number of files in a folder.html
  • 6.1 S4-L4-Task 2 Classify Datasets.pdf
  • 6. Step 2 - Task 2 -Classify Data Sets
  • 7.1 S4-L5-Task 3 Describe Datasets.pdf
  • 7. Step 2 - Task 3 - Describe Data Sets
  • 8.1 S4-L5-Task 3 Describe Datasets.pdf
  • 8. Step 2 - Task 4 - Verify Data Quality
  • 9. Data Quality.html

  • 5. Step 3- Prepare Data
  • 1.1 ✅S5-L1-Prepare-Data-Reduction.pdf
  • 1. Prepare Data - Reduction
  • 2. Data Reduction.html
  • 3.1 ✅S5-L2-Prepare-Data-Feature-Engineering.pdf
  • 3. Prepare Data - Feature Engineering
  • 4. Health Equity Feature.html
  • 5.1 ✅S5-L3-Prepare-Data-Synthesis.pdf
  • 5. Prepare Data - Synthesis
  • 6. Example of Data Synthesis.html
  • 7.1 ✅S5-L4-Ikigai Data Preparation Capabilities.pdf
  • 7. Data Preparation toolkits from Ikigailabs
  • 8. data preparation facets available in Ikigai.html
  • 9.1 ✅S5-L5-Task1 Select.pdf
  • 9. Step 3 - Task 1 - Select
  • 10. How to utilize Select facet.html
  • 11.1 ✅S5-L6-Task2-Reformat.pdf
  • 11. Step 3 - Task 2 - Reformat
  • 12. Use of Convert function.html
  • 13.1 ✅S5-L7-Task3- Filter.pdf
  • 13. Step 3 - Task 3 - Filter
  • 14. Use of Filter facet.html
  • 15.1 ✅S5-L8-Task4 Merge.pdf
  • 15. Step 3 - Task 4 - Merge
  • 16. Use of Inner join facet.html
  • 17.1 ✅S5-L9-Task5-Group.pdf
  • 17. Step 3 - Task 5 - Group
  • 18. Use of Summary facet.html
  • 19.1 ✅S5-L10-Task6 Feature Engineering.pdf
  • 19. Step 3 - Task 6 - Feature Engineering
  • 20. Use of Multi Input Formula facet in Ikigai Labs.html
  • 21.1 ✅S5-L11- Summary of Prepare Data Section.pdf
  • 21.2 Final ABTl.csv
  • 21. Prepare Data - Summary
  • 22. Number of rows in ABT.html

  • 6. Step 4 - Develop Model
  • 1.1 S6-L2-DA-Simple-Statistics.pdf
  • 1. Descriptive Analytics - Simple Statstics
  • 2.1 S6-L3-DA-Bar-Chart.pdf
  • 2. Descriptive Analytics - Bar Chart
  • 3. Bar Chart.html
  • 4.1 S6-L4-DA-Pie-Chart.pdf
  • 4. Descriptive Analytics - Pie Chart
  • 5. Pie chart.html
  • 6.1 S6-L5-DA-Map-Charts.pdf
  • 6. Descriptive Analytics - Map generation
  • 7. Map chart.html
  • 8. Predictive Analytics - Clustering Set-up
  • 9. Clustering facet.html
  • 10.1 S6-L7-Clustering-Results.pdf
  • 10. Predictive Analytics - Clustering Example
  • 11. Visualize clustering results on a Map.html
  • 12.1 S6-L8-Predictive-Analytics-Regression-setup.pdf
  • 12. Predictive Analytics - Regression Set-up
  • 13. Predict facet.html
  • 14.1 S8-L9-Regression-Examples.pdf
  • 14. Predictive Analytics - Regression Example
  • 15. Model Type field in the Predict facet.html
  • 16.1 S6-L10-Prescriptive-Set-up.pdf
  • 16. Prescriptive Analytics - Examples
  • 17. Confounder for scenario analysis.html
  • 18.1 S6-L11-Prescriptive-Algorithm.pdf
  • 18.2 S6-L11-Prescriptive-Algorithm.pdf
  • 18. Prescriptive Analytics - Algorithm
  • 19. Concept of causation.html

  • 7. Step 5 - Evaluate Model
  • 1.1 Clustering results - evaluation.csv
  • 1.2 S7-L1-Evaluate-Model-Clustering.pdf
  • 1. Evaluate Model-Clustering
  • 2. Clustering evalutaion.html
  • 3.1 Regression Results - Evaluation.csv
  • 3.2 S7-L2-Evaluate-Model-Prediction..pdf
  • 3. Evaluate Model - Prediction
  • 4. Evaluating a Prediction model.html

  • 8. Step 6 - Deploy Model
  • 1.1 S8-L1-Deploy Model.pdf
  • 1. Step 6- Deploy Model
  • 2. API Key.html

  • 9. Step 7 - Optimize Model
  • 1.1 S9-L1-Optimize-Model.pdf
  • 1. Step 7 - Optimize Model
  • 2. How to optimize a prediction model.html

  • 10. Summary
  • 1.1 PPT-S10-L1-SummaryNS.pdf
  • 1. Summary and Next Steps
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 27599
    حجم: 2617 مگابایت
    مدت زمان: 287 دقیقه
    تاریخ انتشار: ۲۷ آذر ۱۴۰۲
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید