وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

ML for Business professionals using No-Code AI tools

سرفصل های دوره

Master data-driven decisions in business with No-Code AI. Explore Tableau, ML, Deep Learning & ChatGPT for insights.


1. Setting context of the course
  • 1. Course Introduction
  • 2. Modules in the course

  • 2. Art of Taking Decisions with Data
  • 1. Business Decision Exercise
  • 2. Helping Pineapple make Better Decisions.html
  • 3.1 Different Approaches to Take Decisions.zip
  • 3. Different Approaches to Take Decisions
  • 4.1 Calculator.html
  • 4.2 Calculator.html
  • 4.3 Different Approaches to Take Decisions.zip
  • 4. Common Biases in Decision Making and how to address them (Part-1)
  • 5. Common Biases in Decision Making and how to address them (Part-2)
  • 6. Common Biases in Decision Making and how to address them (Part-3)
  • 7. Common Biases in Decision Making and how to address them..html
  • 8.1 Case Study Madani Airlines.zip
  • 8. Case Study Madani Airlines (Part 1)
  • 9. Case Study Madani Airlines (Part 1).html
  • 10. Case Study Madani Airlines (Part 2)
  • 11. Case Study Madani Airlines (Part 2).html
  • 12. Business Decision Exercise Revisited
  • 13. Helping Pineapple Make Better Decisions.html
  • 14. Conclusion

  • 3. Powering Your Decisions with Chart
  • 1.1 CasaElektra.xlsx
  • 1. Introduction to the Module
  • 2.1 Installation guide Tableau Windows and Mac.pptx
  • 2. Why do we need charts
  • 3. Getting Familiar with Tableau
  • 4. Getting Familiar with Tableau.html
  • 5.1 Headers and UnPivot.xlsx
  • 5.2 Product with Null Values.xlsx
  • 5. Basic Data Preparation
  • 6.1 nocodemodule2lesson4-230501-152524.zip
  • 6. Introduction to Tableau with a case study
  • 7.1 Cheat sheet document.pdf
  • 7.2 How to Save and Retrieve Files from Tableau.pdf
  • 7.3 no code.zip
  • 7. Advanced charts in Tableau with a case study
  • 8. Assignment.html

  • 4. Making Predictions with Machine Learning for Future Readiness
  • 1. Why do we make Predictions
  • 2. How do we make Predictions (Part 1)
  • 3. How do we make Predictions (Part 2)
  • 4. How do we make predictions.html
  • 5.1 Predictions.zip
  • 5. How to Evaluate Predictions Root Mean Squared Error
  • 6. Root Mean Squared Error.html
  • 7. How to Evaluate Predictions Accuracy
  • 8. How to Evaluate Predictions Train-Test Split
  • 9. Train-Test Split.html
  • 10. How to Evaluate Predictions Cross Validation
  • 11. Cross Validation.html
  • 12.1 PopularMetrics for Classification and Regression Models.pdf
  • 12. How to Evaluate Predictions Benchmark Performance
  • 13. What is Machine Learning - Introduction
  • 14. What is Machine Learning - Applications of ML
  • 15. Types of Machine Learning - Supervised ML
  • 16. Supervised Machine Learning.html
  • 17. Types of Machine Learning -Unsupervised ML
  • 18. Unsupervised Learning.html

  • 5. Building Machine Learning models using Orange
  • 1. An overview of No-Code tools
  • 2. Getting familiar with Orange
  • 3.1 FurnishEazy NewData.xlsx
  • 3.2 FurnishEazy TrainData.xlsx
  • 3. ML workflow through Orange using a Case Study (Part-1)
  • 4. ML workflow through Orange using a Case Study (Part-2)
  • 5. Regression Algorithm
  • 6. Classification Algorithms
  • 7.1 KeepSafe NewData.xlsx
  • 7.2 KeepSafe TrainData.xlsx
  • 7. Hands-on Case Study
  • 8.1 TapToBuy NewData (2).csv
  • 8.2 TapToBuy TrainData (2).csv
  • 8.3 Where to use which algorithm.pdf
  • 8. Unsupervised Machine Learning Algorithms
  • 9. Assessment - Machine Learning.html
  • 10.1 Checklist for ML.pdf
  • 10. When not to use ML
  • 11. Building Machine Learning models using Orange.html

  • 6. Advanced AI today and tomorrow
  • 1. Introduction to Deep Learning
  • 2. Introduction to Deep Learning.html
  • 3.1 Brinn Employee Reviews Data csv.zip
  • 3. NLP Hands On in Orange
  • 4. Assessment - NLP.html
  • 5.1 Pizza Topping Images.zip
  • 5. Computer Vision Hands on in Orange
  • 6. Computer Vision.html
  • 7. Generative AI
  • 8. Exploring Simple Applications through Generative AI Tools
  • 9. Ethics in AI
  • 10. Ethics in AI.html
  • 11. Course Conclusion
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 24196
    حجم: 2721 مگابایت
    مدت زمان: 290 دقیقه
    تاریخ انتشار: ۱۲ آذر ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید