وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data Mining – Unsupervised Learning

سرفصل های دوره

Data Mining - Unsupervised Learning


1 - Introduction
  • 1 - Introduction about Tutor

  • 2 - About Analytics
  • 2 - Agenda and Stages Of Analytics
  • 3 - What is Diagnoistic Analytics
  • 4 - What is Predictive Analytics
  • 5 - What is Prescriptive Analytics
  • 6 - What is CRISPMLQ

  • 3 - Business Understanding Phase
  • 7 - Business Understanding Define Scope Of Application
  • 8 - Business Understanding Define Success Criteria
  • 9 - Business Understanding Use Cases

  • 4 - Data Understanding Phase Data Types
  • 10 - Agenda Data Understanding
  • 11 - Introduction to Data Understanding
  • 12 - Data Types Continuous Vs Discrete
  • 13 - Categorical Data Vs Count Data
  • 14 - Pratical Data Understanding using Realtime Examples
  • 15 - Scale of Measurement
  • 16 - Quantitave Vs Qualitative
  • 17 - Structure Vs Unstructured Data

  • 5 - Data Understanding Phase Data Collection
  • 18 - What is Data Collection
  • 19 - Understanding Primary Data Sources
  • 20 - Understanding Secondary Data Sources
  • 21 - Understanding Data Collection Using Survey
  • 22 - Understanding Data Collection Using DoE
  • 23 - Understanding possible errors in Data Collection Stage
  • 24 - Understanding Bias and Fairness

  • 6 - Understanding Basic Statistics
  • 25 - Introduction to CRISPMLQ Data preparation & Agenda
  • 26 - What is Probability
  • 27 - What is Random Variable
  • 28 - Understanding Probability and its ApplicationProbabiity Discussion

  • 7 - Data Preparation Phase Exploratory Data Analysis EDA
  • 29 - Understanding Normal Distribution
  • 30 - What is Inferential Statistics
  • 31 - Understanding Standard Normal Distribution & what is Z Scores
  • 32 - Understanding Measures of central tendency First moment business decession
  • 33 - Understanding Measures of Dispersion Second moment business decision
  • 34 - Understanding Box PlotDiff Bw Percentile and Quantile and Quartile
  • 35 - Understanding Graphical TechniquesQQPlot
  • 36 - Understanding about Bivariate Scatter Plot

  • 8 - Python Installation and Setup
  • 37 - Python Installation
  • 38 - Anakonda Installation
  • 39 - Understand about Anakonda Navigator Spyder & Python Libraries
  • 40 - Understanding about Jupyter and Google Colab

  • 9 - Data Preparation Phase Data Cleansing Type Casting
  • 41 - Recap Of Concepts
  • 42 - Understanding Data Cleansing Typecasting
  • 43 - Understanding Data Cleansing Typecasting Using Python

  • 10 - Data Preparation Phase Data Cleansing Handling Duplicates
  • 44 - Understanding Handling Duplicates
  • 45 - Understanding Handling Duplicates using Python

  • 11 - Data Preparation Phase Data CleansingOutlier Analysis Treatment
  • 46 - Understanding Outlier Analysis Treatment
  • 47 - Understanding Outlier Analysis Treatment using Python

  • 12 - Data Mining Clustering Segmentation using Python
  • 48 - Overview Of Clustering Segmentation
  • 49 - Distance Between Clusters
  • 50 - Hierarchical Clustering Process
  • 51 - Learning Clustering Using Python

  • 13 - Dimension Reduction Techniques
  • 52 - About Dimension Reduction & its Applications
  • 53 - Dimension Reduction Techniques

  • 14 - Network Analytics
  • 54 - Elements of a Network
  • 55 - About Google PageRank Algorithm
  • 56 - Network Based Similarity Metrics
  • 57 - Network related Properties
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 19055
    حجم: 3598 مگابایت
    مدت زمان: 643 دقیقه
    تاریخ انتشار: ۲۰ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید