وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Supervised Learning – Regression Models

سرفصل های دوره

Supervised Learning - Regression Models


1 - Introduction
  • 1 - Introduction About Tutor

  • 2 - Introduction About Basics
  • 2 - Agenda and stages of Analytics
  • 3 - What is Diagnoistic Analytics
  • 4 - What is Predictive Analytics
  • 5 - What is Prescriptive Analytics
  • 6 - What is CRISPMLQ

  • 3 - Business Understanding Phase
  • 7 - Business Understanding Define Scope Of Application
  • 8 - Business Understanding Define Success Criteria
  • 9 - Business Understanding Use Cases

  • 4 - Data Understanding Phase Data Types
  • 10 - Agenda Data Understanding
  • 11 - Introduction to Data Understanding
  • 12 - Data Types Continuous Vs Discrete
  • 13 - Categorical Data Vs Count Data
  • 14 - Pratical Data Understanding using Realtime Examples
  • 15 - Scale of Measurement
  • 16 - Quantitave Vs Qualitative
  • 17 - Structure Vs Unstructured Data
  • 18 - Big Data vs Non Big Data

  • 5 - Data Understanding Phase Data Collection
  • 19 - What is Data Collection
  • 20 - Understanding Primary Data Sources
  • 21 - Understanding Secondary Data Sources
  • 22 - Understanding Data Collection Using Survey
  • 23 - Understanding Data Collection Using DoE
  • 24 - Understanding possible errors in Data Collection Stage
  • 25 - Understanding Bias and Fairness

  • 6 - Understanding Basic Statistics
  • 26 - Introduction to CRISPMLQ Data preparation & Agenda
  • 27 - What is Probability
  • 28 - What is Random Variable
  • 29 - Understanding Probability and its Application Probability Discussion

  • 7 - Data Preparation Phase Exploratory Data Analysis EDA
  • 30 - Understanding Normal Distribution
  • 31 - What is Inferential Statistics
  • 32 - Understanding Standard Normal Distribution & what is Z Scores
  • 33 - Understanding Measures of central tendency First moment business decision
  • 34 - Understanding Measures of Dispersion Second moment business decision
  • 35 - Understanding Box PlotDiff Bw Percentile and Quantile and Quartile
  • 36 - Understanding Graphical TechniquesQQPlot
  • 37 - Understanding about Bivariate Scatter Plot

  • 8 - Python Installation and Setup
  • 38 - Python Installation
  • 39 - Anakonda Installation
  • 40 - Understand about Anakonda Navigator Spyder & Python Libraries
  • 41 - Understanding about Jupyter and Google Colab

  • 9 - Data Preparation Phase Data Cleansing Type Casting
  • 42 - Understanding Data Cleansing Typecasting
  • 43 - Understanding Data Cleansing Typecasting using python

  • 10 - Data Preparation Phase Data Cleansing Handling Duplicates
  • 44 - Understanding Handling Duplicates
  • 45 - Understanding Handling Duplicates using Python

  • 11 - Data Preparation Phase Data CleansingOutlier Analysis Treatment
  • 46 - Understanding Outlier Analysis Treatment
  • 47 - Understanding Outlier Analysis Treatment using Python

  • 12 - Data Mining Clustering Segmentation using Python
  • 48 - Overview Of Clustering Segmentation
  • 49 - Distance Between Clusters
  • 50 - Learning Clustering Using Python

  • 13 - Dimension Reduction Technique
  • 51 - About Dimension Reduction & its Applications

  • 14 - Network Analysis
  • 52 - Elements of a Network
  • 53 - About Google PageRank Algorithm
  • 54 - Network Based Similarity Metrics
  • 55 - Network related Properties

  • 15 - Traditional ML Models Naive Bayes
  • 56 - Introduction to Naive Bayes
  • 57 - Use Cases of Naive Bayes

  • 16 - Decision Tree
  • 58 - About Decision Tree and its Use Case

  • 17 - About Stacking
  • 59 - What is Stacking

  • 18 - About Boosting
  • 60 - Introduction about Boosting

  • 19 - Introduction About Regression Analysis
  • 61 - Introduction About Regression Analysis

  • 20 - Lets know More In About What are the Regression Models
  • 62 - About Simple Liner Regression and its Use Cases
  • 63 - About Multiple Linear Regression
  • 64 - About Simple Logistic and Multiple Logistic Regression
  • 65 - About Multimonial Regression
  • 66 - About Ordinal Regression
  • 67 - About Negative BiNomial Regression
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 18837
    حجم: 4391 مگابایت
    مدت زمان: 793 دقیقه
    تاریخ انتشار: ۱۴ شهریور ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید