وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

The Complete Visual Guide to Machine Learning & Data Science

سرفصل های دوره

Explore Data Science & Machine Learning topics with simple, step-by-step demos and user-friendly Excel models (NO code!)


1 - Getting Started
  • 1 - Course Structure Outline
  • 2 - READ ME Important Notes for New Students.html
  • 3 - DOWNLOAD Course Resources.html
  • 3 - Maven-ML-Demos.xlsx
  • 3 - Maven-ML-Demos-COMPLETE.xlsx
  • 3 - Visual-Guide-to-Machine-Learning.pdf
  • 4 - Setting Expectations

  • 2 - PART 1 QA Data Profiling
  • 5 - Part 1 QA Data Profiling

  • 3 - Intro to the ML Landscape
  • 6 - Intro to Machine Learning
  • 7 - When is ML the right fit
  • 8 - The Machine Learning Process
  • 9 - The Machine Learning Landscape

  • 4 - Preliminary Data QA
  • 10 - Introduction
  • 11 - Why QA
  • 12 - Variable Types
  • 13 - Empty Values
  • 14 - Range Calculations
  • 15 - Count Calculations
  • 16 - Left Right Censored Data
  • 17 - Table Structure
  • 18 - CASE STUDY Preliminary QA
  • 19 - BEST PRACTICES Preliminary QA

  • 5 - Univariate Profiling
  • 20 - Introduction
  • 21 - Categorical Variables
  • 22 - Discretization
  • 23 - Nominal vs Ordinal
  • 24 - Categorical Distributions
  • 25 - Numerical Variables
  • 26 - Histograms Kernel Densities
  • 27 - CASE STUDY Histograms
  • 28 - Normal Distribution
  • 29 - CASE STUDY Normal Distribution
  • 30 - Univariate Data Profiling
  • 31 - Mode
  • 32 - Mean
  • 33 - Median
  • 34 - Percentile
  • 35 - Variance
  • 36 - Standard Deviation
  • 37 - Skewness
  • 38 - BEST PRACTICES Univariate Profiling

  • 6 - Multivariate Profiling
  • 39 - Introduction
  • 40 - CategoricalCategorical
  • 41 - CASE STUDY Heat Maps
  • 42 - CategoricalNumerical
  • 43 - Multivariate Kernel Densities
  • 44 - Violin Plots
  • 45 - Box Plots
  • 46 - Limitations of Categorical Distributions
  • 47 - NumericalNumerical
  • 48 - Correlation
  • 49 - Correlation vs Causation
  • 50 - Visualizing Third Dimension
  • 51 - CASE STUDY Correlation
  • 52 - BEST PRACTICES Multivariate Profiling
  • 53 - Looking Ahead to Part 2

  • 7 - PART 2 Classification Modeling
  • 54 - Part 2 Classification Modeling

  • 8 - Intro to Classification
  • 55 - Supervised vs Unsupervised Learning
  • 56 - Classification vs Regression
  • 57 - RECAP Key Concepts
  • 58 - Classification 101
  • 59 - Classification Workflow
  • 60 - Feature Engineering
  • 61 - Data Splitting
  • 62 - Overfitting

  • 9 - Classification Models
  • 63 - Common Classification Models
  • 64 - Intro to KNearest Neighbors KNN
  • 65 - KNN Examples
  • 66 - CASE STUDY KNN
  • 67 - Intro to Naive Bayes
  • 68 - Naive Bayes Frequency Tables
  • 69 - Naive Bayes Conditional Probability
  • 70 - CASE STUDY Naive Bayes
  • 71 - Intro to Decision Trees
  • 72 - Decision Trees Entropy 101
  • 73 - Entropy Information Gain
  • 74 - Decision Tree Examples
  • 75 - Random Forests
  • 76 - CASE STUDY Decision Trees
  • 77 - Intro to Logistic Regression
  • 78 - Logistic Regression Example
  • 79 - False Positives vs False Negatives
  • 80 - Logistic Regression Equation
  • 81 - The Likelihood Function
  • 82 - Multivariate Logistic Regression
  • 83 - CASE STUDY Logistic Regression
  • 84 - Intro to Sentiment Analysis
  • 85 - Cleaning Text Data
  • 86 - Bag of Words Analysis
  • 87 - CASE STUDY Sentiment Analysis

  • 10 - Model Selection Tuning
  • 88 - Intro to Selection Tuning
  • 89 - Hyperparameters
  • 90 - Imbalanced Classes
  • 91 - Confusion Matrix
  • 92 - Accuracy Precision Recall
  • 93 - Multiclass Confusion Matrix
  • 94 - Multiclass Scoring
  • 95 - Model Selection
  • 96 - Model Drift
  • 97 - Looking ahead to Part 3

  • 11 - PART 3 Regression Forecasting
  • 98 - Part 3 Regression Forecasting

  • 12 - Intro to Regression
  • 99 - Supervised vs Unsupervised Learning
  • 100 - RECAP Key Concepts
  • 101 - Regression 101
  • 102 - Feature Engineering for Regression
  • 103 - Prediction vs RootCause Analysis

  • 13 - Regression Modeling 101
  • 104 - Intro to Regression Modeling
  • 105 - Linear Relationships
  • 106 - Least Squared Error
  • 107 - Univariate Linear Regression
  • 108 - CASE STUDY Univariate Linear Regression
  • 109 - Multiple Linear Regression
  • 110 - NonLinear Regression
  • 111 - CASE STUDY NonLinear Regression

  • 14 - Model Diagnostics
  • 112 - Intro to Model Diagnostics
  • 113 - Sample Model Output
  • 114 - RSquared
  • 115 - Mean Error Metrics MSE MAE MAPE
  • 116 - Homoskedasticity
  • 117 - Null Hypothesis
  • 118 - FSignificance
  • 119 - TValues PValues
  • 120 - Multicollinearity
  • 121 - Variance Inflation Factor
  • 122 - RECAP Sample Model Output

  • 15 - TimeSeries Forecasting
  • 123 - Intro to Forecasting
  • 124 - Seasonality
  • 125 - Auto Correlation Function
  • 126 - CASE STUDY Seasonality with ACF
  • 127 - OneHot Encoding
  • 128 - CASE STUDY Seasonality with OneHot Encoding
  • 129 - Linear Trending
  • 130 - CASE STUDY Seasonality with Linear Trend
  • 131 - Smoothing
  • 132 - CASE STUDY Smoothing
  • 133 - NonLinear Trends
  • 134 - CASE STUDY NonLinear Trend
  • 135 - Intervention Analysis
  • 136 - CASE STUDY Intervention Analysis
  • 137 - Looking Ahead to Part 4

  • 16 - PART 4 Unsupervised Learning
  • 138 - Part 4 Unsupervised Learning

  • 17 - Intro to Unsupervised ML
  • 139 - Supervised vs Unsupervised Learning
  • 140 - Common Unsupervised Techniques
  • 141 - Unsupervised ML Workflow
  • 142 - RECAP Feature Engineering
  • 143 - KEY TAKEAWAYS Intro to Unsupervised ML

  • 18 - Clustering Segmentation
  • 144 - Introduction
  • 145 - Clustering Basics
  • 146 - Intro to KMeans
  • 147 - WSS Elbow Plots
  • 148 - KMeans FAQs
  • 149 - CASE STUDY KMeans
  • 150 - Intro to Hierarchical Clustering
  • 151 - Anatomy of a Dendrogram
  • 152 - Hierarchical Clustering FAQs
  • 153 - KEY TAKEAWAYS Clustering Segmentation

  • 19 - Association Mining Basket Analysis
  • 154 - Introduction
  • 155 - Association Mining Basics
  • 156 - The Apriori Algorithm
  • 157 - Basket Analysis Examples
  • 158 - Minimum Support Thresholds
  • 159 - Infrequent Itemsets
  • 160 - Multiple Item Sets
  • 161 - CASE STUDY Apriori
  • 162 - Markov Chains
  • 163 - CASE STUDY Markov Chains
  • 164 - KEY TAKEAWAYS Association Mining

  • 20 - Outlier Detection
  • 165 - Introduction
  • 166 - Outlier Detection Basics
  • 167 - CrossSectional Outliers
  • 168 - CrossSectional Outlier Example
  • 169 - CASE STUDY CrossSectional Outlier
  • 170 - TimeSeries Outliers
  • 171 - TimeSeries Outlier Example
  • 172 - KEY TAKEAWAYS Outlier Detection

  • 21 - Dimensionality Reduction
  • 173 - Introduction
  • 174 - Dimensionality Reduction Basics
  • 175 - Principle Component Analysis
  • 176 - PCA Example
  • 177 - Interpreting Components
  • 178 - Scree Plots
  • 179 - Advanced Techniques
  • 180 - KEY TAKEAWAYS Dimensionality Reduction

  • 22 - Wrapping Up
  • 181 - Series Conclusion
  • 182 - BONUS LESSON.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 12368
    حجم: 3282 مگابایت
    مدت زمان: 528 دقیقه
    تاریخ انتشار: 28 اردیبهشت 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید