در حال حاضر محصولی در سبد خرید شما وجود ندارد.
Machine Learning Operations (MLOps) is a fast-growing domain the field of AI. As more models are deployed in production, the need for a structured, agile, end-to-end ML lifecycle with automation has grown multifold. MLOps provides structure to machine learning projects and help them succeed over the long run. In this course, instructor Kumaran Ponnambalam focuses on the key concepts of MLOps and helps you apply these concepts to your day-to-day ML work. Kumaran introduces you to the machine learning life cycle and explains unique challenges with ML, as well as important definitions and principles. He walks you through the requirements and design for ML projects, then dives into data processing and management. Kumaran explains various tools and technologies that you can use in the automation and management of continuous training. He covers best practices for model management, then offers detailed instruction on continuous integration.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Edge AI: Tools and Best Practices for Building AI Applications at the Edge
LLM Foundations: Vector Databases for Caching and Retrieval Augmented Generation (RAG)
MLOps Essentials: Model Deployment and Monitoring
Applied AI: Building NLP Apps with Hugging Face Transformers
تجزیه و تحلیل و پیش بینی مشتری
شبکه های عصبی مکرر
آموزش الگوهای پردازش Stream ها بوسیله Apache Flink
آموزش انجام تحلیل های پیشرفته با MySQL
Apache Kafka Essential Training: Building Scalable Applications
MLOps Essentials: Monitoring Model Drift and Bias