وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
3

2024 Deployment of Machine Learning Models in Production

سرفصل های دوره

Deploy ML Model with BERT, DistilBERT, FastText NLP Models in Production with Flask, uWSGI, and NGINX at AWS EC2


1 - BERT Sentiment Prediction Multi Class Prediction Problem
  • 1 - Welcome
  • 2 - Introduction
  • 3 - DO NOT SKIP IT Download Working Files.html
  • 3 - Sentiment-Classification-using-BERT.zip
  • 4 - What is BERT
  • 5 - What is ktrain
  • 6 - Going Deep Inside ktrain Package
  • 7 - Notebook Setup
  • 8 - Must Read This.html
  • 9 - Installing ktrain
  • 10 - Loading Dataset
  • 11 - TrainTest Split and Preprocess with BERT
  • 12 - BERT Model Training
  • 13 - Testing Fine Tuned BERT Model
  • 14 - Saving and Loading Fine Tuned Model

  • 2 - Fine Tuning BERT for Disaster Tweets Classification
  • 15 - Fine-Tuning-BERT-for-Disaster-Tweets-Classification.zip
  • 15 - Resources Folder.html
  • 16 - BERT Intro Disaster Tweets Dataset Understanding
  • 17 - Download Dataset
  • 18 - Target Class Distribution
  • 19 - Number of Characters Distribution in Tweets
  • 20 - Number of Words Average Words Length and Stop words Distribution in Tweets
  • 21 - Most and Least Common Words
  • 22 - OneShot Data Cleaning
  • 23 - Disaster Words Visualization with Word Cloud
  • 24 - Classification with TFIDF and SVM
  • 25 - Classification with Word2Vec and SVM
  • 26 - Word Embeddings and Classification with Deep Learning Part 1
  • 27 - Word Embeddings and Classification with Deep Learning Part 2
  • 28 - BERT Model Building and Training
  • 29 - BERT Model Evaluation

  • 3 - DistilBERT Faster and Cheaper BERT model from Hugging Face
  • 30 - DistilBERT-App.zip
  • 30 - Sentiment-Classification-using-DistilBERT.zip
  • 30 - What is DistilBERT
  • 31 - Notebook Setup
  • 32 - Data Preparation
  • 33 - DistilBERT Model Training
  • 34 - Save Model at Google Drive
  • 35 - Model Evaluation
  • 36 - Download Fine Tuned DistilBERT Model
  • 37 - Flask App Preparation
  • 38 - Run Your First Flask Application
  • 39 - Predict Sentiment at Your Local Machine
  • 40 - Build Predict API
  • 41 - Deploy DistilBERT Model at Your Local Machine

  • 4 - Deploy Your DistilBERT ML Model at AWS EC2 Windows Machine with Flask
  • 42 - Create AWS Account
  • 43 - Create Free Windows EC2 Instance
  • 44 - Connect EC2 Instance from Windows 10
  • 45 - Install Python on EC2 Windows 10
  • 46 - Must Read This.html
  • 47 - Install TensorFlow 2 and KTRAIN
  • 48 - Run Your First Flask Application on AWS EC2
  • 49 - Transfer DistilBERT Model to EC2 Flask Server
  • 50 - Deploy ML Model on EC2 Server
  • 51 - Make Your ML Model Accessible to the World

  • 5 - Deploy Your DistilBERT ML Model at AWS Ubuntu Linux Machine with Flask
  • 52 - Install Git Bash and Commander Terminal on Local Computer
  • 53 - Create AWS Account
  • 54 - Launch Ubuntu Machine on EC2
  • 55 - Connect AWS Ubuntu Linux from Windows Computer
  • 56 - Install PIP3 on AWS Ubuntu
  • 57 - Update and Upgrade Your Ubuntu Packages
  • 58 - Must Read This.html
  • 59 - Install TensorFlow 2 KTRAIN and Upload DistilBert Model
  • 60 - Create Extra RAM from SSD by Memory Swapping
  • 61 - Deploy DistilBERT ML Model on EC2 Ubuntu Machine

  • 6 - Deploy Robust and Secure Production Server with NGINX uWSGI and Flask
  • 62 - NGINX Introduction
  • 62 - NGINX-uWSGI-and-Flask-Installation-Guide-Jupyter-Notebook.zip
  • 63 - Virtual Environment Setup
  • 64 - Setting Up Flask Server
  • 65 - NGINX Running Flask Application
  • 66 - NGINX Running uWSGI Application
  • 67 - Configuring uWSGI Server
  • 68 - Start API Services at System Startup
  • 69 - Configuring NGINX with uWSGI and Flask Server
  • 70 - Congrats You Have Deployed ML Model in Production

  • 7 - MultiLabel Classification Deploy Facebooks FastText NLP Model in Production
  • 71 - FastText-App.zip
  • 71 - FastText-Multi-Label-Text-Classification.zip
  • 71 - NGINX-uWSGI-and-Flask-Installation-Guide-Jupyter-Notebook.zip
  • 71 - What is MultiLabel Classification
  • 72 - FastText Research Paper Review
  • 73 - Notebook Setup
  • 74 - Data Preparation
  • 75 - FastText Model Training
  • 76 - FastText Model Evaluation and Saving at Google Drive
  • 77 - Creating Fresh Ubuntu Machine
  • 78 - Setting Python3 and PIP3 Alias
  • 79 - Creating 4GB Extra RAM by Memory Swapping
  • 80 - Making Your Server Ready
  • 81 - Preparing Prediction APIs
  • 82 - Testing Prediction API at Local Machine
  • 83 - Testing Prediction API at AWS Ubuntu Machine
  • 84 - Configuring uWSGI Server
  • 85 - Deploy FastText Model in Production with NGINX uWSGI and Flask
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 34738
    حجم: 5421 مگابایت
    مدت زمان: 577 دقیقه
    تاریخ انتشار: ۱۱ اردیبهشت ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید