در حال حاضر محصولی در سبد خرید شما وجود ندارد.
در این دوره آموزشی قدم به قدم یاد می گیرید که چطور با Scikit-learn کار کرده و کلاسترینگ انجام دهید.
عنوان اصلی : Building Clustering Models with scikit-learn
بررسی اجمالی دوره
نمای کلی ماژول
پیش نیازها و رئوس مطالب دوره
یادگیری تحت نظارت و بدون نظارت
خوشه بندی اهداف و موارد استفاده
K-به معنای خوشه بندی است
ارزیابی مدل های خوشه بندی
شروع به کار با نصب و راهاندازی با یادگیری scikit
انجام K-به معنی خوشه بندی
ارزیابی K-means Clustering
کاوش مجموعه داده Iris
انجام K-means خوشه بندی و ارزیابی
نمای کلی ماژول
دسته بندی الگوریتم های خوشه بندی
راه اندازی توابع کمکی برای انجام خوشه بندی
انتخاب الگوریتم های خوشه بندی
خوشه بندی سلسله مراتبی
خوشه بندی تجمعی
خوشه بندی DBSCAN
خوشه بندی میانگین تغییر
خوشه بندی توس
خوشه بندی انتشار وابستگی
دسته کوچک K-به معنی خوشه بندی
خوشه بندی طیفی با استفاده از یک ماتریس از پیش محاسبه شده
نمای کلی ماژول
درک امتیاز Silhouette
K-به معنی تعداد خوشه ها: روش آرنج
K-به معنی تعداد خوشه ها: روش Silhouette
دانه ها و اندازه گیری های فاصله
تنظیم فراپارامتر: K-means Clustering
تنظیم فراپارامتر: خوشه بندی DBSCAN
تنظیم فراپارامتر: خوشه بندی میانگین شیفت
نمای کلی ماژول
تصاویر به عنوان ماتریس
کاوش مجموعه داده ارقام دستنویس MNIST
خوشه بندی داده های تصویری
خلاصه و مطالعه بیشتر
Building Clustering Models with scikit-learn
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Apache Airflow Essential Training
آموزش اعمال معادلات دیفرانسیل و مدل های معکوس در زبان R
آموزش انتقال استایل ها بوسیله PyTorch
Experimental Design for Data Analysis
AI Workshop: Hands-on with GANs with Deep Convolutional Networks
آموزش Scrape صفحات وب به زبان Python
آموزش تحلیل داده ها بوسیله Qlik Sense
Natural Language Processing with PyTorch
فیلم یادگیری Deploying PyTorch Models in Production: PyTorch Playbook
آموزش خلاصه سازی داده ها و انجام کارهای آماری مربوط به آن