وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Self Driving and ROS – Learn by Doing! Odometry & Control

سرفصل های دوره

Create a Self-Driving robot and learn about Robot Localization and Sensor Fusion using Kalman Filters


1. Introduction
  • 1. Course Motivation
  • 2. The Self-Driving Program
  • 3. Course Presentation
  • 4. Meet your Teacher
  • 5. Get the Most out of the Course
  • 6. Course Material.html

  • 2. Setup
  • 1. Install Ubuntu on Virtual Machine.html
  • 2. Install Ubuntu on Dual Boot.html
  • 3. Install ROS
  • 4. Configure the Development Environment

  • 3. ROS Introduction
  • 1. Why a Robot Operating System
  • 2. What is ROS
  • 3. Hardware Abstraction
  • 4. Low-Level Device Control
  • 5. Messaging between Process
  • 6. Package Management
  • 7. Architecture of a ROS Application
  • 8. LABCreate and Activate a WorkspaceLAB
  • 9. PYSimple PublisherPY
  • 10. C++Simple PublisherC++
  • 11. PYSimple SubscriberPY
  • 12. C++Simple SubscriberC++

  • 4. Locomotion
  • 1. Robot Locomotions
  • 2. Mobile Robots
  • 3.1 L27 Friction Effects.pdf
  • 3. Friction Effects
  • 4. Robot Description
  • 5. URDF
  • 6. LABCreate the URDF ModelLAB
  • 7. RViz
  • 8. Parameter Server
  • 9. LABParameter ServerLAB
  • 10. LABVisualize the RobotLAB
  • 11. Launch Files
  • 12. LABVisualize the Robot with Launch FilesLAB
  • 13. Gazebo
  • 14. LABSimulate the RobotLAB
  • 15. LABLaunch the SimulationLAB

  • 5. Control
  • 1. ROS Control
  • 2. Control Types
  • 3. LABROS Control with GazeboLAB
  • 4. YAML Configuration File
  • 5. LABYAML Configuration FileLAB
  • 6. LABLaunch the ControllerLAB

  • 6. Kinematics
  • 1. Robot Kinematics
  • 2. Pose of a Mobile Robot
  • 3. Translation Vector
  • 4. LABIntroduction to TurtlesimLAB
  • 5. PYTranslation VectorPY
  • 6. C++Translation VectorC++
  • 7.1 L52 Rotation Matrix.pdf
  • 7. Rotation Matrix
  • 8. PYRotation MatrixPY
  • 9. C++Rotation MatrixC++
  • 10. Transformation Matrix

  • 7. Differential Kinematics
  • 1. Differential Kinematics
  • 2. Velocity of a Mobile Robot
  • 3.1 L58 Linear Velocity.pdf
  • 3. Linear Velocity
  • 4.1 L59 Angular Velocity.pdf
  • 4. Angular Velocity
  • 5.1 L60 Velocity in World Frame.pdf
  • 5. Velocity in World Frame
  • 6.1 L61 Differential Forward Kinematics.pdf
  • 6. Differential Forward Kinematics
  • 7. Simple Speed Controller
  • 8. PYSimple Speed ControllerPY
  • 9. C++Simple Speed ControllerC++
  • 10. LABTeleoperating with JoystickLAB
  • 11. LABUsing the diff drive controllerLAB

  • 8. TF Library
  • 1. The TF Library
  • 2. Operations with Transformations
  • 3. Static and Dynamic Transformations
  • 4. PYSimple TF Static BroadcasterPY
  • 5. C++Simple TF Static BroadcasterC++
  • 6. ROS Timer
  • 7. PYROS TimerPY
  • 8. C++ROS TimerC++
  • 9. PYSimple TF BroadcasterPY
  • 10. C++Simple TF BroadcasterC++
  • 11. ROS Services
  • 12. PYService ServerPY
  • 13. C++Service ServerC++
  • 14. PYService ClientPY
  • 15. C++Service ClientC++
  • 16. PYSimple TF ListenerPY
  • 17. C++Simple TF ListenerC++
  • 18. Angle Rapresentations
  • 19. Euler Angles
  • 20. Quaternion
  • 21. PYEuler to QuaternionPY
  • 22. C++Euler to QuaternionC++
  • 23. LABTF ToolsLAB

  • 9. Odometry
  • 1. Where is the Robot
  • 2. The Local Localization Challenge
  • 3. Wheel Odometry
  • 4.1 L93 Differential Inverse Kinematics.pdf
  • 4. Differential Inverse Kinematics
  • 5. PYDifferential Inverse KinematicPY
  • 6. C++Differential Inverse KinematicC++
  • 7.1 L96 Wheel Odometry Position.pdf
  • 7. Wheel Odometry - Position
  • 8.1 L97 Wheel Odometry Orientation.pdf
  • 8. Wheel Odometry - Orientation
  • 9. PYWheel OdometryPY
  • 10. C++Wheel OdometryC++
  • 11. PYPublish Odometry MessagePY
  • 12. C++Publish Odometry MessageC++
  • 13. PYBroadcast Odometry TransformPY
  • 14. C++Broadcast Odometry TransformC++

  • 10. Probability for Robotics
  • 1. Motivation
  • 2.1 L105 Random Variables.pdf
  • 2. Random Variables
  • 3.1 L106 Conditional Probability.pdf
  • 3. Conditional Probability
  • 4.1 L107 Probability Distributions.pdf
  • 4. Probability Distributions
  • 5. Gaussian Distributions
  • 6.1 L109 Total Probability.pdf
  • 6. Total Probability Theorem
  • 7.1 L110 Bayes Rule.pdf
  • 7. Bayes Rule
  • 8. Sensor Noise
  • 9. PYAdding Noise to Robot MotionPY
  • 10. C++Adding Noise to Robot MotionC++
  • 11. LABOdometry ComparisonLAB

  • 11. Sensor Fusion
  • 1. Advantages of having Multiple Sensors
  • 2. Gyroscope
  • 3. Accelerometer and IMU
  • 4. LABSimulate IMU SensorIMU
  • 5. Kalman Filter
  • 6. PYFilter InitializationPY
  • 7. C++Filter InitializationC++
  • 8. Measurement Update
  • 9. PYMeasurement UpdatePY
  • 10. C++Measurement UpdateC++
  • 11. State Prediction
  • 12. PYState PredictionPY
  • 13. C++State PredictionC++
  • 14. LABLocalization with Kalman FilterLAB
  • 15. Extended Kalman Filter (EKF)
  • 16. PYIMU RepublisherPY
  • 17. C++IMU RepublisherC++
  • 18. LABSensor Fusion with robot localizationLAB

  • 12. Conclusions
  • 1. Recap
  • 2. Whats Next
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 12323
    حجم: 8586 مگابایت
    مدت زمان: 1164 دقیقه
    تاریخ انتشار: ۲۸ اردیبهشت ۱۴۰۲
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید