وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Self Driving and ROS – Learn by Doing! Odometry & Control

سرفصل های دوره

Create a Self-Driving robot and learn about Robot Localization and Sensor Fusion using Kalman Filters


1. Introduction
  • 1. Course Motivation
  • 2. The Self-Driving Program
  • 3. Course Presentation
  • 4. Meet your Teacher
  • 5. Get the Most out of the Course
  • 6. Course Material.html

  • 2. Setup
  • 1. Install Ubuntu on Virtual Machine.html
  • 2. Install Ubuntu on Dual Boot.html
  • 3. Install ROS
  • 4. Configure the Development Environment

  • 3. ROS Introduction
  • 1. Why a Robot Operating System
  • 2. What is ROS
  • 3. Hardware Abstraction
  • 4. Low-Level Device Control
  • 5. Messaging between Process
  • 6. Package Management
  • 7. Architecture of a ROS Application
  • 8. LABCreate and Activate a WorkspaceLAB
  • 9. PYSimple PublisherPY
  • 10. C++Simple PublisherC++
  • 11. PYSimple SubscriberPY
  • 12. C++Simple SubscriberC++

  • 4. Locomotion
  • 1. Robot Locomotions
  • 2. Mobile Robots
  • 3.1 L27 Friction Effects.pdf
  • 3. Friction Effects
  • 4. Robot Description
  • 5. URDF
  • 6. LABCreate the URDF ModelLAB
  • 7. RViz
  • 8. Parameter Server
  • 9. LABParameter ServerLAB
  • 10. LABVisualize the RobotLAB
  • 11. Launch Files
  • 12. LABVisualize the Robot with Launch FilesLAB
  • 13. Gazebo
  • 14. LABSimulate the RobotLAB
  • 15. LABLaunch the SimulationLAB

  • 5. Control
  • 1. ROS Control
  • 2. Control Types
  • 3. LABROS Control with GazeboLAB
  • 4. YAML Configuration File
  • 5. LABYAML Configuration FileLAB
  • 6. LABLaunch the ControllerLAB

  • 6. Kinematics
  • 1. Robot Kinematics
  • 2. Pose of a Mobile Robot
  • 3. Translation Vector
  • 4. LABIntroduction to TurtlesimLAB
  • 5. PYTranslation VectorPY
  • 6. C++Translation VectorC++
  • 7.1 L52 Rotation Matrix.pdf
  • 7. Rotation Matrix
  • 8. PYRotation MatrixPY
  • 9. C++Rotation MatrixC++
  • 10. Transformation Matrix

  • 7. Differential Kinematics
  • 1. Differential Kinematics
  • 2. Velocity of a Mobile Robot
  • 3.1 L58 Linear Velocity.pdf
  • 3. Linear Velocity
  • 4.1 L59 Angular Velocity.pdf
  • 4. Angular Velocity
  • 5.1 L60 Velocity in World Frame.pdf
  • 5. Velocity in World Frame
  • 6.1 L61 Differential Forward Kinematics.pdf
  • 6. Differential Forward Kinematics
  • 7. Simple Speed Controller
  • 8. PYSimple Speed ControllerPY
  • 9. C++Simple Speed ControllerC++
  • 10. LABTeleoperating with JoystickLAB
  • 11. LABUsing the diff drive controllerLAB

  • 8. TF Library
  • 1. The TF Library
  • 2. Operations with Transformations
  • 3. Static and Dynamic Transformations
  • 4. PYSimple TF Static BroadcasterPY
  • 5. C++Simple TF Static BroadcasterC++
  • 6. ROS Timer
  • 7. PYROS TimerPY
  • 8. C++ROS TimerC++
  • 9. PYSimple TF BroadcasterPY
  • 10. C++Simple TF BroadcasterC++
  • 11. ROS Services
  • 12. PYService ServerPY
  • 13. C++Service ServerC++
  • 14. PYService ClientPY
  • 15. C++Service ClientC++
  • 16. PYSimple TF ListenerPY
  • 17. C++Simple TF ListenerC++
  • 18. Angle Rapresentations
  • 19. Euler Angles
  • 20. Quaternion
  • 21. PYEuler to QuaternionPY
  • 22. C++Euler to QuaternionC++
  • 23. LABTF ToolsLAB

  • 9. Odometry
  • 1. Where is the Robot
  • 2. The Local Localization Challenge
  • 3. Wheel Odometry
  • 4.1 L93 Differential Inverse Kinematics.pdf
  • 4. Differential Inverse Kinematics
  • 5. PYDifferential Inverse KinematicPY
  • 6. C++Differential Inverse KinematicC++
  • 7.1 L96 Wheel Odometry Position.pdf
  • 7. Wheel Odometry - Position
  • 8.1 L97 Wheel Odometry Orientation.pdf
  • 8. Wheel Odometry - Orientation
  • 9. PYWheel OdometryPY
  • 10. C++Wheel OdometryC++
  • 11. PYPublish Odometry MessagePY
  • 12. C++Publish Odometry MessageC++
  • 13. PYBroadcast Odometry TransformPY
  • 14. C++Broadcast Odometry TransformC++

  • 10. Probability for Robotics
  • 1. Motivation
  • 2.1 L105 Random Variables.pdf
  • 2. Random Variables
  • 3.1 L106 Conditional Probability.pdf
  • 3. Conditional Probability
  • 4.1 L107 Probability Distributions.pdf
  • 4. Probability Distributions
  • 5. Gaussian Distributions
  • 6.1 L109 Total Probability.pdf
  • 6. Total Probability Theorem
  • 7.1 L110 Bayes Rule.pdf
  • 7. Bayes Rule
  • 8. Sensor Noise
  • 9. PYAdding Noise to Robot MotionPY
  • 10. C++Adding Noise to Robot MotionC++
  • 11. LABOdometry ComparisonLAB

  • 11. Sensor Fusion
  • 1. Advantages of having Multiple Sensors
  • 2. Gyroscope
  • 3. Accelerometer and IMU
  • 4. LABSimulate IMU SensorIMU
  • 5. Kalman Filter
  • 6. PYFilter InitializationPY
  • 7. C++Filter InitializationC++
  • 8. Measurement Update
  • 9. PYMeasurement UpdatePY
  • 10. C++Measurement UpdateC++
  • 11. State Prediction
  • 12. PYState PredictionPY
  • 13. C++State PredictionC++
  • 14. LABLocalization with Kalman FilterLAB
  • 15. Extended Kalman Filter (EKF)
  • 16. PYIMU RepublisherPY
  • 17. C++IMU RepublisherC++
  • 18. LABSensor Fusion with robot localizationLAB

  • 12. Conclusions
  • 1. Recap
  • 2. Whats Next
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 12323
    حجم: 8586 مگابایت
    مدت زمان: 1164 دقیقه
    تاریخ انتشار: ۲۸ اردیبهشت ۱۴۰۲
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید